Metamath Proof Explorer


Theorem iiconn

Description: The unit interval is connected. (Contributed by Mario Carneiro, 11-Feb-2015)

Ref Expression
Assertion iiconn IIConn

Proof

Step Hyp Ref Expression
1 dfii2 II=topGenran.𝑡01
2 0re 0
3 1re 1
4 iccconn 01topGenran.𝑡01Conn
5 2 3 4 mp2an topGenran.𝑡01Conn
6 1 5 eqeltri IIConn