Metamath Proof Explorer


Theorem iineq12i

Description: Equality theorem for indexed intersection. Inference version. General version of iineq1i . (Contributed by GG, 1-Sep-2025)

Ref Expression
Hypotheses iineq12i.1 A = B
iineq12i.2 C = D
Assertion iineq12i x A C = x B D

Proof

Step Hyp Ref Expression
1 iineq12i.1 A = B
2 iineq12i.2 C = D
3 2 eleq2i t C t D
4 1 3 raleqbii x A t C x B t D
5 4 abbii t | x A t C = t | x B t D
6 df-iin x A C = t | x A t C
7 df-iin x B D = t | x B t D
8 5 6 7 3eqtr4i x A C = x B D