Metamath Proof Explorer


Theorem iinssd

Description: Subset implication for an indexed intersection. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses iinssd.1 φXA
iinssd.2 x=XB=D
iinssd.3 φDC
Assertion iinssd φxABC

Proof

Step Hyp Ref Expression
1 iinssd.1 φXA
2 iinssd.2 x=XB=D
3 iinssd.3 φDC
4 2 sseq1d x=XBCDC
5 4 rspcev XADCxABC
6 1 3 5 syl2anc φxABC
7 iinss xABCxABC
8 6 7 syl φxABC