Metamath Proof Explorer


Theorem iinun2

Description: Indexed intersection of union. Generalization of half of theorem "Distributive laws" in Enderton p. 30. Use intiin to recover Enderton's theorem. (Contributed by NM, 19-Aug-2004)

Ref Expression
Assertion iinun2 xABC=BxAC

Proof

Step Hyp Ref Expression
1 r19.32v xAyByCyBxAyC
2 elun yBCyByC
3 2 ralbii xAyBCxAyByC
4 eliin yVyxACxAyC
5 4 elv yxACxAyC
6 5 orbi2i yByxACyBxAyC
7 1 3 6 3bitr4i xAyBCyByxAC
8 eliin yVyxABCxAyBC
9 8 elv yxABCxAyBC
10 elun yBxACyByxAC
11 7 9 10 3bitr4i yxABCyBxAC
12 11 eqriv xABC=BxAC