Metamath Proof Explorer


Theorem imadifss

Description: The difference of images is a subset of the image of the difference. (Contributed by Brendan Leahy, 21-Aug-2020)

Ref Expression
Assertion imadifss F A F B F A B

Proof

Step Hyp Ref Expression
1 ssun2 A B A
2 undif2 B A B = B A
3 1 2 sseqtrri A B A B
4 imass2 A B A B F A F B A B
5 3 4 ax-mp F A F B A B
6 imaundi F B A B = F B F A B
7 5 6 sseqtri F A F B F A B
8 ssundif F A F B F A B F A F B F A B
9 7 8 mpbi F A F B F A B