Step |
Hyp |
Ref |
Expression |
1 |
|
ssun2 |
|- A C_ ( B u. A ) |
2 |
|
undif2 |
|- ( B u. ( A \ B ) ) = ( B u. A ) |
3 |
1 2
|
sseqtrri |
|- A C_ ( B u. ( A \ B ) ) |
4 |
|
imass2 |
|- ( A C_ ( B u. ( A \ B ) ) -> ( F " A ) C_ ( F " ( B u. ( A \ B ) ) ) ) |
5 |
3 4
|
ax-mp |
|- ( F " A ) C_ ( F " ( B u. ( A \ B ) ) ) |
6 |
|
imaundi |
|- ( F " ( B u. ( A \ B ) ) ) = ( ( F " B ) u. ( F " ( A \ B ) ) ) |
7 |
5 6
|
sseqtri |
|- ( F " A ) C_ ( ( F " B ) u. ( F " ( A \ B ) ) ) |
8 |
|
ssundif |
|- ( ( F " A ) C_ ( ( F " B ) u. ( F " ( A \ B ) ) ) <-> ( ( F " A ) \ ( F " B ) ) C_ ( F " ( A \ B ) ) ) |
9 |
7 8
|
mpbi |
|- ( ( F " A ) \ ( F " B ) ) C_ ( F " ( A \ B ) ) |