Metamath Proof Explorer


Theorem imadifss

Description: The difference of images is a subset of the image of the difference. (Contributed by Brendan Leahy, 21-Aug-2020)

Ref Expression
Assertion imadifss
|- ( ( F " A ) \ ( F " B ) ) C_ ( F " ( A \ B ) )

Proof

Step Hyp Ref Expression
1 ssun2
 |-  A C_ ( B u. A )
2 undif2
 |-  ( B u. ( A \ B ) ) = ( B u. A )
3 1 2 sseqtrri
 |-  A C_ ( B u. ( A \ B ) )
4 imass2
 |-  ( A C_ ( B u. ( A \ B ) ) -> ( F " A ) C_ ( F " ( B u. ( A \ B ) ) ) )
5 3 4 ax-mp
 |-  ( F " A ) C_ ( F " ( B u. ( A \ B ) ) )
6 imaundi
 |-  ( F " ( B u. ( A \ B ) ) ) = ( ( F " B ) u. ( F " ( A \ B ) ) )
7 5 6 sseqtri
 |-  ( F " A ) C_ ( ( F " B ) u. ( F " ( A \ B ) ) )
8 ssundif
 |-  ( ( F " A ) C_ ( ( F " B ) u. ( F " ( A \ B ) ) ) <-> ( ( F " A ) \ ( F " B ) ) C_ ( F " ( A \ B ) ) )
9 7 8 mpbi
 |-  ( ( F " A ) \ ( F " B ) ) C_ ( F " ( A \ B ) )