Metamath Proof Explorer


Theorem imain

Description: The image of an intersection is the intersection of images. (Contributed by Paul Chapman, 11-Apr-2009)

Ref Expression
Assertion imain FunF-1FAB=FAFB

Proof

Step Hyp Ref Expression
1 imadif FunF-1FAAB=FAFAB
2 imadif FunF-1FAB=FAFB
3 2 difeq2d FunF-1FAFAB=FAFAFB
4 1 3 eqtrd FunF-1FAAB=FAFAFB
5 dfin4 AB=AAB
6 5 imaeq2i FAB=FAAB
7 dfin4 FAFB=FAFAFB
8 4 6 7 3eqtr4g FunF-1FAB=FAFB