Metamath Proof Explorer


Theorem imbrov2fvoveq

Description: Equality theorem for nested function and operation value in an implication for a binary relation. Technical theorem to be used to reduce the size of a significant number of proofs. (Contributed by AV, 17-Aug-2022)

Ref Expression
Hypothesis imbrov2fvoveq.1 X=Yφψ
Assertion imbrov2fvoveq X=YφFGX·˙ORAψFGY·˙ORA

Proof

Step Hyp Ref Expression
1 imbrov2fvoveq.1 X=Yφψ
2 fveq2 X=YGX=GY
3 2 fvoveq1d X=YFGX·˙O=FGY·˙O
4 3 breq1d X=YFGX·˙ORAFGY·˙ORA
5 1 4 imbi12d X=YφFGX·˙ORAψFGY·˙ORA