Metamath Proof Explorer


Theorem imre

Description: The imaginary part of a complex number in terms of the real part function. (Contributed by NM, 12-May-2005) (Revised by Mario Carneiro, 6-Nov-2013)

Ref Expression
Assertion imre AA=iA

Proof

Step Hyp Ref Expression
1 imval AA=Ai
2 ax-icn i
3 ine0 i0
4 divrec2 Aii0Ai=1iA
5 2 3 4 mp3an23 AAi=1iA
6 irec 1i=i
7 6 oveq1i 1iA=iA
8 5 7 eqtrdi AAi=iA
9 8 fveq2d AAi=iA
10 1 9 eqtrd AA=iA