Metamath Proof Explorer


Theorem indf

Description: An indicator function as a function with domain and codomain. (Contributed by Thierry Arnoux, 13-Aug-2017)

Ref Expression
Assertion indf OVAO𝟙OA:O01

Proof

Step Hyp Ref Expression
1 indval OVAO𝟙OA=xOifxA10
2 1re 1
3 0re 0
4 ifpr 10ifxA1010
5 2 3 4 mp2an ifxA1010
6 prcom 10=01
7 5 6 eleqtri ifxA1001
8 7 a1i OVAOxOifxA1001
9 1 8 fmpt3d OVAO𝟙OA:O01