Metamath Proof Explorer


Theorem indistpsALT

Description: The indiscrete topology on a set A expressed as a topological space. Here we show how to derive the structural version indistps from the direct component assignment version indistps2 . (Contributed by NM, 24-Oct-2012) (Revised by AV, 31-Oct-2024) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses indistpsALT.a AV
indistpsALT.k K=BasendxATopSetndxA
Assertion indistpsALT KTopSp

Proof

Step Hyp Ref Expression
1 indistpsALT.a AV
2 indistpsALT.k K=BasendxATopSetndxA
3 indistopon AVATopOnA
4 basendxlttsetndx Basendx<TopSetndx
5 tsetndxnn TopSetndx
6 2 4 5 2strbas1 AVA=BaseK
7 1 6 ax-mp A=BaseK
8 prex AV
9 tsetid TopSet=SlotTopSetndx
10 2 4 5 9 2strop1 AVA=TopSetK
11 8 10 ax-mp A=TopSetK
12 7 11 tsettps ATopOnAKTopSp
13 1 3 12 mp2b KTopSp