Metamath Proof Explorer


Theorem inf3lem4

Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 for detailed description. (Contributed by NM, 29-Oct-1996)

Ref Expression
Hypotheses inf3lem.1 G=yVwx|wxy
inf3lem.2 F=recGω
inf3lem.3 AV
inf3lem.4 BV
Assertion inf3lem4 xxxAωFAFsucA

Proof

Step Hyp Ref Expression
1 inf3lem.1 G=yVwx|wxy
2 inf3lem.2 F=recGω
3 inf3lem.3 AV
4 inf3lem.4 BV
5 1 2 3 4 inf3lem1 AωFAFsucA
6 5 a1i xxxAωFAFsucA
7 1 2 3 4 inf3lem3 xxxAωFAFsucA
8 6 7 jcad xxxAωFAFsucAFAFsucA
9 df-pss FAFsucAFAFsucAFAFsucA
10 8 9 imbitrrdi xxxAωFAFsucA