Metamath Proof Explorer


Theorem inf3lem7

Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 for detailed description. In the proof, we invoke the Axiom of Replacement in the form of f1dmex . (Contributed by NM, 29-Oct-1996) (Proof shortened by Mario Carneiro, 19-Jan-2013)

Ref Expression
Hypotheses inf3lem.1 G=yVwx|wxy
inf3lem.2 F=recGω
inf3lem.3 AV
inf3lem.4 BV
Assertion inf3lem7 xxxωV

Proof

Step Hyp Ref Expression
1 inf3lem.1 G=yVwx|wxy
2 inf3lem.2 F=recGω
3 inf3lem.3 AV
4 inf3lem.4 BV
5 1 2 3 4 inf3lem6 xxxF:ω1-1𝒫x
6 vpwex 𝒫xV
7 f1dmex F:ω1-1𝒫x𝒫xVωV
8 5 6 7 sylancl xxxωV