Description: An infimum belongs to its base class (closure law). See also inflb and infglb . (Contributed by AV, 3-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | infcl.1 | ||
| infcl.2 | |||
| Assertion | infcl | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | infcl.1 | ||
| 2 | infcl.2 | ||
| 3 | df-inf | ||
| 4 | cnvso | ||
| 5 | 1 4 | sylib | |
| 6 | 1 2 | infcllem | |
| 7 | 5 6 | supcl | |
| 8 | 3 7 | eqeltrid |