Metamath Proof Explorer


Theorem infcllem

Description: Lemma for infcl , inflb , infglb , etc. (Contributed by AV, 3-Sep-2020)

Ref Expression
Hypotheses infcl.1 φROrA
infcl.2 φxAyB¬yRxyAxRyzBzRy
Assertion infcllem φxAyB¬xR-1yyAyR-1xzByR-1z

Proof

Step Hyp Ref Expression
1 infcl.1 φROrA
2 infcl.2 φxAyB¬yRxyAxRyzBzRy
3 vex xV
4 vex yV
5 3 4 brcnv xR-1yyRx
6 5 bicomi yRxxR-1y
7 6 notbii ¬yRx¬xR-1y
8 7 ralbii yB¬yRxyB¬xR-1y
9 4 3 brcnv yR-1xxRy
10 9 bicomi xRyyR-1x
11 vex zV
12 4 11 brcnv yR-1zzRy
13 12 bicomi zRyyR-1z
14 13 rexbii zBzRyzByR-1z
15 10 14 imbi12i xRyzBzRyyR-1xzByR-1z
16 15 ralbii yAxRyzBzRyyAyR-1xzByR-1z
17 8 16 anbi12i yB¬yRxyAxRyzBzRyyB¬xR-1yyAyR-1xzByR-1z
18 17 rexbii xAyB¬yRxyAxRyzBzRyxAyB¬xR-1yyAyR-1xzByR-1z
19 2 18 sylib φxAyB¬xR-1yyAyR-1xzByR-1z