Description: An infinite set is equinumerous to its union with a smaller one. (Contributed by NM, 28-Sep-2004) (Revised by Mario Carneiro, 29-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | infunabs | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 | |
|
2 | reldom | |
|
3 | 2 | brrelex1i | |
4 | 3 | 3ad2ant3 | |
5 | undjudom | |
|
6 | 1 4 5 | syl2anc | |
7 | infdjuabs | |
|
8 | domentr | |
|
9 | 6 7 8 | syl2anc | |
10 | unexg | |
|
11 | 1 4 10 | syl2anc | |
12 | ssun1 | |
|
13 | ssdomg | |
|
14 | 11 12 13 | mpisyl | |
15 | sbth | |
|
16 | 9 14 15 | syl2anc | |