Metamath Proof Explorer


Theorem infunabs

Description: An infinite set is equinumerous to its union with a smaller one. (Contributed by NM, 28-Sep-2004) (Revised by Mario Carneiro, 29-Apr-2015)

Ref Expression
Assertion infunabs AdomcardωABAABA

Proof

Step Hyp Ref Expression
1 simp1 AdomcardωABAAdomcard
2 reldom Rel
3 2 brrelex1i BABV
4 3 3ad2ant3 AdomcardωABABV
5 undjudom AdomcardBVABA⊔︀B
6 1 4 5 syl2anc AdomcardωABAABA⊔︀B
7 infdjuabs AdomcardωABAA⊔︀BA
8 domentr ABA⊔︀BA⊔︀BAABA
9 6 7 8 syl2anc AdomcardωABAABA
10 unexg AdomcardBVABV
11 1 4 10 syl2anc AdomcardωABAABV
12 ssun1 AAB
13 ssdomg ABVAABAAB
14 11 12 13 mpisyl AdomcardωABAAAB
15 sbth ABAAABABA
16 9 14 15 syl2anc AdomcardωABAABA