Metamath Proof Explorer


Theorem infxpidm2

Description: Every infinite well-orderable set is equinumerous to its Cartesian square. This theorem provides the basis for infinite cardinal arithmetic. Proposition 10.40 of TakeutiZaring p. 95. See also infxpidm . (Contributed by Mario Carneiro, 9-Mar-2013) (Revised by Mario Carneiro, 29-Apr-2015)

Ref Expression
Assertion infxpidm2 AdomcardωAA×AA

Proof

Step Hyp Ref Expression
1 cardid2 AdomcardcardAA
2 1 ensymd AdomcardAcardA
3 xpen AcardAAcardAA×AcardA×cardA
4 2 2 3 syl2anc AdomcardA×AcardA×cardA
5 4 adantr AdomcardωAA×AcardA×cardA
6 cardon cardAOn
7 cardom cardω=ω
8 omelon ωOn
9 onenon ωOnωdomcard
10 8 9 ax-mp ωdomcard
11 carddom2 ωdomcardAdomcardcardωcardAωA
12 10 11 mpan AdomcardcardωcardAωA
13 12 biimpar AdomcardωAcardωcardA
14 7 13 eqsstrrid AdomcardωAωcardA
15 infxpen cardAOnωcardAcardA×cardAcardA
16 6 14 15 sylancr AdomcardωAcardA×cardAcardA
17 entr A×AcardA×cardAcardA×cardAcardAA×AcardA
18 5 16 17 syl2anc AdomcardωAA×AcardA
19 1 adantr AdomcardωAcardAA
20 entr A×AcardAcardAAA×AA
21 18 19 20 syl2anc AdomcardωAA×AA