Description: Every infinite well-orderable set is equinumerous to its Cartesian square. This theorem provides the basis for infinite cardinal arithmetic. Proposition 10.40 of TakeutiZaring p. 95. See also infxpidm . (Contributed by Mario Carneiro, 9-Mar-2013) (Revised by Mario Carneiro, 29-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | infxpidm2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cardid2 | |
|
2 | 1 | ensymd | |
3 | xpen | |
|
4 | 2 2 3 | syl2anc | |
5 | 4 | adantr | |
6 | cardon | |
|
7 | cardom | |
|
8 | omelon | |
|
9 | onenon | |
|
10 | 8 9 | ax-mp | |
11 | carddom2 | |
|
12 | 10 11 | mpan | |
13 | 12 | biimpar | |
14 | 7 13 | eqsstrrid | |
15 | infxpen | |
|
16 | 6 14 15 | sylancr | |
17 | entr | |
|
18 | 5 16 17 | syl2anc | |
19 | 1 | adantr | |
20 | entr | |
|
21 | 18 19 20 | syl2anc | |