Metamath Proof Explorer


Theorem infxpenc

Description: A canonical version of infxpen , by a completely different approach (although it uses infxpen via xpomen ). Using Cantor's normal form, we can show that A ^o B respects equinumerosity ( oef1o ), so that all the steps of (om ^ W ) x. ( om ^ W ) ~_om ^ ( 2 W ) ~ (om ^ 2 ) ^ W ~_om ^ W can be verified using bijections to do the ordinal commutations. (The assumption on N can be satisfied using cnfcom3c .) (Contributed by Mario Carneiro, 30-May-2015) (Revised by AV, 7-Jul-2019)

Ref Expression
Hypotheses infxpenc.1 φAOn
infxpenc.2 φωA
infxpenc.3 φWOn1𝑜
infxpenc.4 φF:ω𝑜2𝑜1-1 ontoω
infxpenc.5 φF=
infxpenc.6 φN:A1-1 ontoω𝑜W
infxpenc.k K=yxω𝑜2𝑜W|finSuppxFyIW-1
infxpenc.h H=ωCNFWKω𝑜2𝑜CNFW-1
infxpenc.l L=yxωW𝑜2𝑜|finSuppxIωyYX-1-1
infxpenc.x X=z2𝑜,wWW𝑜z+𝑜w
infxpenc.y Y=z2𝑜,wW2𝑜𝑜w+𝑜z
infxpenc.j J=ωCNF2𝑜𝑜WLωCNFW𝑜2𝑜-1
infxpenc.z Z=xω𝑜W,yω𝑜Wω𝑜W𝑜x+𝑜y
infxpenc.t T=xA,yANxNy
infxpenc.g G=N-1HJZT
Assertion infxpenc φG:A×A1-1 ontoA

Proof

Step Hyp Ref Expression
1 infxpenc.1 φAOn
2 infxpenc.2 φωA
3 infxpenc.3 φWOn1𝑜
4 infxpenc.4 φF:ω𝑜2𝑜1-1 ontoω
5 infxpenc.5 φF=
6 infxpenc.6 φN:A1-1 ontoω𝑜W
7 infxpenc.k K=yxω𝑜2𝑜W|finSuppxFyIW-1
8 infxpenc.h H=ωCNFWKω𝑜2𝑜CNFW-1
9 infxpenc.l L=yxωW𝑜2𝑜|finSuppxIωyYX-1-1
10 infxpenc.x X=z2𝑜,wWW𝑜z+𝑜w
11 infxpenc.y Y=z2𝑜,wW2𝑜𝑜w+𝑜z
12 infxpenc.j J=ωCNF2𝑜𝑜WLωCNFW𝑜2𝑜-1
13 infxpenc.z Z=xω𝑜W,yω𝑜Wω𝑜W𝑜x+𝑜y
14 infxpenc.t T=xA,yANxNy
15 infxpenc.g G=N-1HJZT
16 f1ocnv N:A1-1 ontoω𝑜WN-1:ω𝑜W1-1 ontoA
17 6 16 syl φN-1:ω𝑜W1-1 ontoA
18 f1oi IW:W1-1 ontoW
19 18 a1i φIW:W1-1 ontoW
20 omelon ωOn
21 20 a1i φωOn
22 2on 2𝑜On
23 oecl ωOn2𝑜Onω𝑜2𝑜On
24 21 22 23 sylancl φω𝑜2𝑜On
25 22 a1i φ2𝑜On
26 peano1 ω
27 26 a1i φω
28 oen0 ωOn2𝑜Onωω𝑜2𝑜
29 21 25 27 28 syl21anc φω𝑜2𝑜
30 ondif1 ω𝑜2𝑜On1𝑜ω𝑜2𝑜Onω𝑜2𝑜
31 24 29 30 sylanbrc φω𝑜2𝑜On1𝑜
32 3 eldifad φWOn
33 4 19 31 32 21 32 5 7 8 oef1o φH:ω𝑜2𝑜𝑜W1-1 ontoω𝑜W
34 f1oi Iω:ω1-1 ontoω
35 34 a1i φIω:ω1-1 ontoω
36 10 11 omf1o WOn2𝑜OnYX-1:W𝑜2𝑜1-1 onto2𝑜𝑜W
37 32 22 36 sylancl φYX-1:W𝑜2𝑜1-1 onto2𝑜𝑜W
38 ondif1 ωOn1𝑜ωOnω
39 20 26 38 mpbir2an ωOn1𝑜
40 39 a1i φωOn1𝑜
41 omcl WOn2𝑜OnW𝑜2𝑜On
42 32 22 41 sylancl φW𝑜2𝑜On
43 omcl 2𝑜OnWOn2𝑜𝑜WOn
44 25 32 43 syl2anc φ2𝑜𝑜WOn
45 fvresi ωIω=
46 26 45 mp1i φIω=
47 35 37 40 42 21 44 46 9 12 oef1o φJ:ω𝑜W𝑜2𝑜1-1 ontoω𝑜2𝑜𝑜W
48 oeoe ωOn2𝑜OnWOnω𝑜2𝑜𝑜W=ω𝑜2𝑜𝑜W
49 20 25 32 48 mp3an2i φω𝑜2𝑜𝑜W=ω𝑜2𝑜𝑜W
50 49 f1oeq3d φJ:ω𝑜W𝑜2𝑜1-1 ontoω𝑜2𝑜𝑜WJ:ω𝑜W𝑜2𝑜1-1 ontoω𝑜2𝑜𝑜W
51 47 50 mpbird φJ:ω𝑜W𝑜2𝑜1-1 ontoω𝑜2𝑜𝑜W
52 f1oco H:ω𝑜2𝑜𝑜W1-1 ontoω𝑜WJ:ω𝑜W𝑜2𝑜1-1 ontoω𝑜2𝑜𝑜WHJ:ω𝑜W𝑜2𝑜1-1 ontoω𝑜W
53 33 51 52 syl2anc φHJ:ω𝑜W𝑜2𝑜1-1 ontoω𝑜W
54 df-2o 2𝑜=suc1𝑜
55 54 oveq2i W𝑜2𝑜=W𝑜suc1𝑜
56 1on 1𝑜On
57 omsuc WOn1𝑜OnW𝑜suc1𝑜=W𝑜1𝑜+𝑜W
58 32 56 57 sylancl φW𝑜suc1𝑜=W𝑜1𝑜+𝑜W
59 55 58 eqtrid φW𝑜2𝑜=W𝑜1𝑜+𝑜W
60 om1 WOnW𝑜1𝑜=W
61 32 60 syl φW𝑜1𝑜=W
62 61 oveq1d φW𝑜1𝑜+𝑜W=W+𝑜W
63 59 62 eqtrd φW𝑜2𝑜=W+𝑜W
64 63 oveq2d φω𝑜W𝑜2𝑜=ω𝑜W+𝑜W
65 oeoa ωOnWOnWOnω𝑜W+𝑜W=ω𝑜W𝑜ω𝑜W
66 20 32 32 65 mp3an2i φω𝑜W+𝑜W=ω𝑜W𝑜ω𝑜W
67 64 66 eqtrd φω𝑜W𝑜2𝑜=ω𝑜W𝑜ω𝑜W
68 67 f1oeq2d φHJ:ω𝑜W𝑜2𝑜1-1 ontoω𝑜WHJ:ω𝑜W𝑜ω𝑜W1-1 ontoω𝑜W
69 53 68 mpbid φHJ:ω𝑜W𝑜ω𝑜W1-1 ontoω𝑜W
70 oecl ωOnWOnω𝑜WOn
71 21 32 70 syl2anc φω𝑜WOn
72 13 omxpenlem ω𝑜WOnω𝑜WOnZ:ω𝑜W×ω𝑜W1-1 ontoω𝑜W𝑜ω𝑜W
73 71 71 72 syl2anc φZ:ω𝑜W×ω𝑜W1-1 ontoω𝑜W𝑜ω𝑜W
74 f1oco HJ:ω𝑜W𝑜ω𝑜W1-1 ontoω𝑜WZ:ω𝑜W×ω𝑜W1-1 ontoω𝑜W𝑜ω𝑜WHJZ:ω𝑜W×ω𝑜W1-1 ontoω𝑜W
75 69 73 74 syl2anc φHJZ:ω𝑜W×ω𝑜W1-1 ontoω𝑜W
76 f1of N:A1-1 ontoω𝑜WN:Aω𝑜W
77 6 76 syl φN:Aω𝑜W
78 77 feqmptd φN=xANx
79 78 f1oeq1d φN:A1-1 ontoω𝑜WxANx:A1-1 ontoω𝑜W
80 6 79 mpbid φxANx:A1-1 ontoω𝑜W
81 77 feqmptd φN=yANy
82 81 f1oeq1d φN:A1-1 ontoω𝑜WyANy:A1-1 ontoω𝑜W
83 6 82 mpbid φyANy:A1-1 ontoω𝑜W
84 80 83 xpf1o φxA,yANxNy:A×A1-1 ontoω𝑜W×ω𝑜W
85 f1oeq1 T=xA,yANxNyT:A×A1-1 ontoω𝑜W×ω𝑜WxA,yANxNy:A×A1-1 ontoω𝑜W×ω𝑜W
86 14 85 ax-mp T:A×A1-1 ontoω𝑜W×ω𝑜WxA,yANxNy:A×A1-1 ontoω𝑜W×ω𝑜W
87 84 86 sylibr φT:A×A1-1 ontoω𝑜W×ω𝑜W
88 f1oco HJZ:ω𝑜W×ω𝑜W1-1 ontoω𝑜WT:A×A1-1 ontoω𝑜W×ω𝑜WHJZT:A×A1-1 ontoω𝑜W
89 75 87 88 syl2anc φHJZT:A×A1-1 ontoω𝑜W
90 f1oco N-1:ω𝑜W1-1 ontoAHJZT:A×A1-1 ontoω𝑜WN-1HJZT:A×A1-1 ontoA
91 17 89 90 syl2anc φN-1HJZT:A×A1-1 ontoA
92 f1oeq1 G=N-1HJZTG:A×A1-1 ontoAN-1HJZT:A×A1-1 ontoA
93 15 92 ax-mp G:A×A1-1 ontoAN-1HJZT:A×A1-1 ontoA
94 91 93 sylibr φG:A×A1-1 ontoA