Description: A canonical version of infxpen , by a completely different approach (although it uses infxpen via xpomen ). Using Cantor's normal form, we can show that A ^o B respects equinumerosity ( oef1o ), so that all the steps of (om ^ W ) x. ( om ^ W ) ~_om ^ ( 2 W ) ~ (om ^ 2 ) ^ W ~_om ^ W can be verified using bijections to do the ordinal commutations. (The assumption on N can be satisfied using cnfcom3c .) (Contributed by Mario Carneiro, 30-May-2015) (Revised by AV, 7-Jul-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | infxpenc.1 | |
|
infxpenc.2 | |
||
infxpenc.3 | |
||
infxpenc.4 | |
||
infxpenc.5 | |
||
infxpenc.6 | |
||
infxpenc.k | |
||
infxpenc.h | |
||
infxpenc.l | |
||
infxpenc.x | |
||
infxpenc.y | |
||
infxpenc.j | |
||
infxpenc.z | |
||
infxpenc.t | |
||
infxpenc.g | |
||
Assertion | infxpenc | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infxpenc.1 | |
|
2 | infxpenc.2 | |
|
3 | infxpenc.3 | |
|
4 | infxpenc.4 | |
|
5 | infxpenc.5 | |
|
6 | infxpenc.6 | |
|
7 | infxpenc.k | |
|
8 | infxpenc.h | |
|
9 | infxpenc.l | |
|
10 | infxpenc.x | |
|
11 | infxpenc.y | |
|
12 | infxpenc.j | |
|
13 | infxpenc.z | |
|
14 | infxpenc.t | |
|
15 | infxpenc.g | |
|
16 | f1ocnv | |
|
17 | 6 16 | syl | |
18 | f1oi | |
|
19 | 18 | a1i | |
20 | omelon | |
|
21 | 20 | a1i | |
22 | 2on | |
|
23 | oecl | |
|
24 | 21 22 23 | sylancl | |
25 | 22 | a1i | |
26 | peano1 | |
|
27 | 26 | a1i | |
28 | oen0 | |
|
29 | 21 25 27 28 | syl21anc | |
30 | ondif1 | |
|
31 | 24 29 30 | sylanbrc | |
32 | 3 | eldifad | |
33 | 4 19 31 32 21 32 5 7 8 | oef1o | |
34 | f1oi | |
|
35 | 34 | a1i | |
36 | 10 11 | omf1o | |
37 | 32 22 36 | sylancl | |
38 | ondif1 | |
|
39 | 20 26 38 | mpbir2an | |
40 | 39 | a1i | |
41 | omcl | |
|
42 | 32 22 41 | sylancl | |
43 | omcl | |
|
44 | 25 32 43 | syl2anc | |
45 | fvresi | |
|
46 | 26 45 | mp1i | |
47 | 35 37 40 42 21 44 46 9 12 | oef1o | |
48 | oeoe | |
|
49 | 20 25 32 48 | mp3an2i | |
50 | 49 | f1oeq3d | |
51 | 47 50 | mpbird | |
52 | f1oco | |
|
53 | 33 51 52 | syl2anc | |
54 | df-2o | |
|
55 | 54 | oveq2i | |
56 | 1on | |
|
57 | omsuc | |
|
58 | 32 56 57 | sylancl | |
59 | 55 58 | eqtrid | |
60 | om1 | |
|
61 | 32 60 | syl | |
62 | 61 | oveq1d | |
63 | 59 62 | eqtrd | |
64 | 63 | oveq2d | |
65 | oeoa | |
|
66 | 20 32 32 65 | mp3an2i | |
67 | 64 66 | eqtrd | |
68 | 67 | f1oeq2d | |
69 | 53 68 | mpbid | |
70 | oecl | |
|
71 | 21 32 70 | syl2anc | |
72 | 13 | omxpenlem | |
73 | 71 71 72 | syl2anc | |
74 | f1oco | |
|
75 | 69 73 74 | syl2anc | |
76 | f1of | |
|
77 | 6 76 | syl | |
78 | 77 | feqmptd | |
79 | 78 | f1oeq1d | |
80 | 6 79 | mpbid | |
81 | 77 | feqmptd | |
82 | 81 | f1oeq1d | |
83 | 6 82 | mpbid | |
84 | 80 83 | xpf1o | |
85 | f1oeq1 | |
|
86 | 14 85 | ax-mp | |
87 | 84 86 | sylibr | |
88 | f1oco | |
|
89 | 75 87 88 | syl2anc | |
90 | f1oco | |
|
91 | 17 89 90 | syl2anc | |
92 | f1oeq1 | |
|
93 | 15 92 | ax-mp | |
94 | 91 93 | sylibr | |