| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
|
| 2 |
|
oe0m0 |
|
| 3 |
1 2
|
eqtrdi |
|
| 4 |
3
|
oveq1d |
|
| 5 |
|
oe1m |
|
| 6 |
4 5
|
sylan9eqr |
|
| 7 |
6
|
adantll |
|
| 8 |
|
oveq2 |
|
| 9 |
|
0elon |
|
| 10 |
|
oecl |
|
| 11 |
9 10
|
mpan |
|
| 12 |
|
oe0 |
|
| 13 |
11 12
|
syl |
|
| 14 |
8 13
|
sylan9eqr |
|
| 15 |
14
|
adantlr |
|
| 16 |
7 15
|
jaodan |
|
| 17 |
|
om00 |
|
| 18 |
17
|
biimpar |
|
| 19 |
18
|
oveq2d |
|
| 20 |
19 2
|
eqtrdi |
|
| 21 |
16 20
|
eqtr4d |
|
| 22 |
|
on0eln0 |
|
| 23 |
|
on0eln0 |
|
| 24 |
22 23
|
bi2anan9 |
|
| 25 |
|
neanior |
|
| 26 |
24 25
|
bitrdi |
|
| 27 |
|
oe0m1 |
|
| 28 |
27
|
biimpa |
|
| 29 |
28
|
oveq1d |
|
| 30 |
|
oe0m1 |
|
| 31 |
30
|
biimpa |
|
| 32 |
29 31
|
sylan9eq |
|
| 33 |
32
|
an4s |
|
| 34 |
|
om00el |
|
| 35 |
|
omcl |
|
| 36 |
|
oe0m1 |
|
| 37 |
35 36
|
syl |
|
| 38 |
34 37
|
bitr3d |
|
| 39 |
38
|
biimpa |
|
| 40 |
33 39
|
eqtr4d |
|
| 41 |
40
|
ex |
|
| 42 |
26 41
|
sylbird |
|
| 43 |
42
|
imp |
|
| 44 |
21 43
|
pm2.61dan |
|
| 45 |
|
oveq1 |
|
| 46 |
45
|
oveq1d |
|
| 47 |
|
oveq1 |
|
| 48 |
46 47
|
eqeq12d |
|
| 49 |
44 48
|
imbitrrid |
|
| 50 |
49
|
impcom |
|
| 51 |
|
oveq1 |
|
| 52 |
51
|
oveq1d |
|
| 53 |
|
oveq1 |
|
| 54 |
52 53
|
eqeq12d |
|
| 55 |
54
|
imbi2d |
|
| 56 |
|
eleq1 |
|
| 57 |
|
eleq2 |
|
| 58 |
56 57
|
anbi12d |
|
| 59 |
|
eleq1 |
|
| 60 |
|
eleq2 |
|
| 61 |
59 60
|
anbi12d |
|
| 62 |
|
1on |
|
| 63 |
|
0lt1o |
|
| 64 |
62 63
|
pm3.2i |
|
| 65 |
58 61 64
|
elimhyp |
|
| 66 |
65
|
simpli |
|
| 67 |
65
|
simpri |
|
| 68 |
66 67
|
oeoelem |
|
| 69 |
55 68
|
dedth |
|
| 70 |
69
|
imp |
|
| 71 |
70
|
an32s |
|
| 72 |
50 71
|
oe0lem |
|
| 73 |
72
|
3impb |
|