| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oeoelem.1 |
|
| 2 |
|
oeoelem.2 |
|
| 3 |
|
oveq2 |
|
| 4 |
|
oveq2 |
|
| 5 |
4
|
oveq2d |
|
| 6 |
3 5
|
eqeq12d |
|
| 7 |
|
oveq2 |
|
| 8 |
|
oveq2 |
|
| 9 |
8
|
oveq2d |
|
| 10 |
7 9
|
eqeq12d |
|
| 11 |
|
oveq2 |
|
| 12 |
|
oveq2 |
|
| 13 |
12
|
oveq2d |
|
| 14 |
11 13
|
eqeq12d |
|
| 15 |
|
oveq2 |
|
| 16 |
|
oveq2 |
|
| 17 |
16
|
oveq2d |
|
| 18 |
15 17
|
eqeq12d |
|
| 19 |
|
oecl |
|
| 20 |
1 19
|
mpan |
|
| 21 |
|
oe0 |
|
| 22 |
20 21
|
syl |
|
| 23 |
|
om0 |
|
| 24 |
23
|
oveq2d |
|
| 25 |
|
oe0 |
|
| 26 |
1 25
|
ax-mp |
|
| 27 |
24 26
|
eqtrdi |
|
| 28 |
22 27
|
eqtr4d |
|
| 29 |
|
oveq1 |
|
| 30 |
|
oesuc |
|
| 31 |
20 30
|
sylan |
|
| 32 |
|
omsuc |
|
| 33 |
32
|
oveq2d |
|
| 34 |
|
omcl |
|
| 35 |
|
oeoa |
|
| 36 |
1 35
|
mp3an1 |
|
| 37 |
34 36
|
sylan |
|
| 38 |
37
|
anabss1 |
|
| 39 |
33 38
|
eqtrd |
|
| 40 |
31 39
|
eqeq12d |
|
| 41 |
29 40
|
imbitrrid |
|
| 42 |
41
|
expcom |
|
| 43 |
|
iuneq2 |
|
| 44 |
|
vex |
|
| 45 |
|
oen0 |
|
| 46 |
2 45
|
mpan2 |
|
| 47 |
|
oelim |
|
| 48 |
19 47
|
sylanl1 |
|
| 49 |
46 48
|
mpidan |
|
| 50 |
1 49
|
mpanl1 |
|
| 51 |
44 50
|
mpanr1 |
|
| 52 |
|
omlim |
|
| 53 |
44 52
|
mpanr1 |
|
| 54 |
53
|
oveq2d |
|
| 55 |
|
limord |
|
| 56 |
|
ordelon |
|
| 57 |
55 56
|
sylan |
|
| 58 |
57 34
|
sylan2 |
|
| 59 |
58
|
anassrs |
|
| 60 |
59
|
ralrimiva |
|
| 61 |
|
0ellim |
|
| 62 |
61
|
ne0d |
|
| 63 |
62
|
adantl |
|
| 64 |
|
vex |
|
| 65 |
|
oelim |
|
| 66 |
2 65
|
mpan2 |
|
| 67 |
1 66
|
mpan |
|
| 68 |
64 67
|
mpan |
|
| 69 |
|
oewordi |
|
| 70 |
2 69
|
mpan2 |
|
| 71 |
1 70
|
mp3an3 |
|
| 72 |
71
|
3impia |
|
| 73 |
68 72
|
onoviun |
|
| 74 |
44 60 63 73
|
mp3an2i |
|
| 75 |
54 74
|
eqtrd |
|
| 76 |
51 75
|
eqeq12d |
|
| 77 |
43 76
|
imbitrrid |
|
| 78 |
77
|
expcom |
|
| 79 |
6 10 14 18 28 42 78
|
tfinds3 |
|
| 80 |
79
|
impcom |
|