Description: Ordinal exponentiation with a base of 1. Proposition 8.31(3) of TakeutiZaring p. 67. Lemma 2.17 of Schloeder p. 6. (Contributed by NM, 2-Jan-2005)
Ref | Expression | ||
---|---|---|---|
Assertion | oe1m | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 | |
|
2 | 1 | eqeq1d | |
3 | oveq2 | |
|
4 | 3 | eqeq1d | |
5 | oveq2 | |
|
6 | 5 | eqeq1d | |
7 | oveq2 | |
|
8 | 7 | eqeq1d | |
9 | 1on | |
|
10 | oe0 | |
|
11 | 9 10 | ax-mp | |
12 | oesuc | |
|
13 | 9 12 | mpan | |
14 | oveq1 | |
|
15 | om1 | |
|
16 | 9 15 | ax-mp | |
17 | 14 16 | eqtrdi | |
18 | 13 17 | sylan9eq | |
19 | 18 | ex | |
20 | iuneq2 | |
|
21 | vex | |
|
22 | 0lt1o | |
|
23 | oelim | |
|
24 | 22 23 | mpan2 | |
25 | 9 24 | mpan | |
26 | 21 25 | mpan | |
27 | 26 | eqeq1d | |
28 | 0ellim | |
|
29 | ne0i | |
|
30 | iunconst | |
|
31 | 28 29 30 | 3syl | |
32 | 31 | eqeq2d | |
33 | 27 32 | bitr4d | |
34 | 20 33 | imbitrrid | |
35 | 2 4 6 8 11 19 34 | tfinds | |