Metamath Proof Explorer


Theorem oe1m

Description: Ordinal exponentiation with a base of 1. Proposition 8.31(3) of TakeutiZaring p. 67. Lemma 2.17 of Schloeder p. 6. (Contributed by NM, 2-Jan-2005)

Ref Expression
Assertion oe1m AOn1𝑜𝑜A=1𝑜

Proof

Step Hyp Ref Expression
1 oveq2 x=1𝑜𝑜x=1𝑜𝑜
2 1 eqeq1d x=1𝑜𝑜x=1𝑜1𝑜𝑜=1𝑜
3 oveq2 x=y1𝑜𝑜x=1𝑜𝑜y
4 3 eqeq1d x=y1𝑜𝑜x=1𝑜1𝑜𝑜y=1𝑜
5 oveq2 x=sucy1𝑜𝑜x=1𝑜𝑜sucy
6 5 eqeq1d x=sucy1𝑜𝑜x=1𝑜1𝑜𝑜sucy=1𝑜
7 oveq2 x=A1𝑜𝑜x=1𝑜𝑜A
8 7 eqeq1d x=A1𝑜𝑜x=1𝑜1𝑜𝑜A=1𝑜
9 1on 1𝑜On
10 oe0 1𝑜On1𝑜𝑜=1𝑜
11 9 10 ax-mp 1𝑜𝑜=1𝑜
12 oesuc 1𝑜OnyOn1𝑜𝑜sucy=1𝑜𝑜y𝑜1𝑜
13 9 12 mpan yOn1𝑜𝑜sucy=1𝑜𝑜y𝑜1𝑜
14 oveq1 1𝑜𝑜y=1𝑜1𝑜𝑜y𝑜1𝑜=1𝑜𝑜1𝑜
15 om1 1𝑜On1𝑜𝑜1𝑜=1𝑜
16 9 15 ax-mp 1𝑜𝑜1𝑜=1𝑜
17 14 16 eqtrdi 1𝑜𝑜y=1𝑜1𝑜𝑜y𝑜1𝑜=1𝑜
18 13 17 sylan9eq yOn1𝑜𝑜y=1𝑜1𝑜𝑜sucy=1𝑜
19 18 ex yOn1𝑜𝑜y=1𝑜1𝑜𝑜sucy=1𝑜
20 iuneq2 yx1𝑜𝑜y=1𝑜yx1𝑜𝑜y=yx1𝑜
21 vex xV
22 0lt1o 1𝑜
23 oelim 1𝑜OnxVLimx1𝑜1𝑜𝑜x=yx1𝑜𝑜y
24 22 23 mpan2 1𝑜OnxVLimx1𝑜𝑜x=yx1𝑜𝑜y
25 9 24 mpan xVLimx1𝑜𝑜x=yx1𝑜𝑜y
26 21 25 mpan Limx1𝑜𝑜x=yx1𝑜𝑜y
27 26 eqeq1d Limx1𝑜𝑜x=1𝑜yx1𝑜𝑜y=1𝑜
28 0ellim Limxx
29 ne0i xx
30 iunconst xyx1𝑜=1𝑜
31 28 29 30 3syl Limxyx1𝑜=1𝑜
32 31 eqeq2d Limxyx1𝑜𝑜y=yx1𝑜yx1𝑜𝑜y=1𝑜
33 27 32 bitr4d Limx1𝑜𝑜x=1𝑜yx1𝑜𝑜y=yx1𝑜
34 20 33 imbitrrid Limxyx1𝑜𝑜y=1𝑜1𝑜𝑜x=1𝑜
35 2 4 6 8 11 19 34 tfinds AOn1𝑜𝑜A=1𝑜