| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
|- ( B = (/) -> ( (/) ^o B ) = ( (/) ^o (/) ) ) |
| 2 |
|
oe0m0 |
|- ( (/) ^o (/) ) = 1o |
| 3 |
1 2
|
eqtrdi |
|- ( B = (/) -> ( (/) ^o B ) = 1o ) |
| 4 |
3
|
oveq1d |
|- ( B = (/) -> ( ( (/) ^o B ) ^o C ) = ( 1o ^o C ) ) |
| 5 |
|
oe1m |
|- ( C e. On -> ( 1o ^o C ) = 1o ) |
| 6 |
4 5
|
sylan9eqr |
|- ( ( C e. On /\ B = (/) ) -> ( ( (/) ^o B ) ^o C ) = 1o ) |
| 7 |
6
|
adantll |
|- ( ( ( B e. On /\ C e. On ) /\ B = (/) ) -> ( ( (/) ^o B ) ^o C ) = 1o ) |
| 8 |
|
oveq2 |
|- ( C = (/) -> ( ( (/) ^o B ) ^o C ) = ( ( (/) ^o B ) ^o (/) ) ) |
| 9 |
|
0elon |
|- (/) e. On |
| 10 |
|
oecl |
|- ( ( (/) e. On /\ B e. On ) -> ( (/) ^o B ) e. On ) |
| 11 |
9 10
|
mpan |
|- ( B e. On -> ( (/) ^o B ) e. On ) |
| 12 |
|
oe0 |
|- ( ( (/) ^o B ) e. On -> ( ( (/) ^o B ) ^o (/) ) = 1o ) |
| 13 |
11 12
|
syl |
|- ( B e. On -> ( ( (/) ^o B ) ^o (/) ) = 1o ) |
| 14 |
8 13
|
sylan9eqr |
|- ( ( B e. On /\ C = (/) ) -> ( ( (/) ^o B ) ^o C ) = 1o ) |
| 15 |
14
|
adantlr |
|- ( ( ( B e. On /\ C e. On ) /\ C = (/) ) -> ( ( (/) ^o B ) ^o C ) = 1o ) |
| 16 |
7 15
|
jaodan |
|- ( ( ( B e. On /\ C e. On ) /\ ( B = (/) \/ C = (/) ) ) -> ( ( (/) ^o B ) ^o C ) = 1o ) |
| 17 |
|
om00 |
|- ( ( B e. On /\ C e. On ) -> ( ( B .o C ) = (/) <-> ( B = (/) \/ C = (/) ) ) ) |
| 18 |
17
|
biimpar |
|- ( ( ( B e. On /\ C e. On ) /\ ( B = (/) \/ C = (/) ) ) -> ( B .o C ) = (/) ) |
| 19 |
18
|
oveq2d |
|- ( ( ( B e. On /\ C e. On ) /\ ( B = (/) \/ C = (/) ) ) -> ( (/) ^o ( B .o C ) ) = ( (/) ^o (/) ) ) |
| 20 |
19 2
|
eqtrdi |
|- ( ( ( B e. On /\ C e. On ) /\ ( B = (/) \/ C = (/) ) ) -> ( (/) ^o ( B .o C ) ) = 1o ) |
| 21 |
16 20
|
eqtr4d |
|- ( ( ( B e. On /\ C e. On ) /\ ( B = (/) \/ C = (/) ) ) -> ( ( (/) ^o B ) ^o C ) = ( (/) ^o ( B .o C ) ) ) |
| 22 |
|
on0eln0 |
|- ( B e. On -> ( (/) e. B <-> B =/= (/) ) ) |
| 23 |
|
on0eln0 |
|- ( C e. On -> ( (/) e. C <-> C =/= (/) ) ) |
| 24 |
22 23
|
bi2anan9 |
|- ( ( B e. On /\ C e. On ) -> ( ( (/) e. B /\ (/) e. C ) <-> ( B =/= (/) /\ C =/= (/) ) ) ) |
| 25 |
|
neanior |
|- ( ( B =/= (/) /\ C =/= (/) ) <-> -. ( B = (/) \/ C = (/) ) ) |
| 26 |
24 25
|
bitrdi |
|- ( ( B e. On /\ C e. On ) -> ( ( (/) e. B /\ (/) e. C ) <-> -. ( B = (/) \/ C = (/) ) ) ) |
| 27 |
|
oe0m1 |
|- ( B e. On -> ( (/) e. B <-> ( (/) ^o B ) = (/) ) ) |
| 28 |
27
|
biimpa |
|- ( ( B e. On /\ (/) e. B ) -> ( (/) ^o B ) = (/) ) |
| 29 |
28
|
oveq1d |
|- ( ( B e. On /\ (/) e. B ) -> ( ( (/) ^o B ) ^o C ) = ( (/) ^o C ) ) |
| 30 |
|
oe0m1 |
|- ( C e. On -> ( (/) e. C <-> ( (/) ^o C ) = (/) ) ) |
| 31 |
30
|
biimpa |
|- ( ( C e. On /\ (/) e. C ) -> ( (/) ^o C ) = (/) ) |
| 32 |
29 31
|
sylan9eq |
|- ( ( ( B e. On /\ (/) e. B ) /\ ( C e. On /\ (/) e. C ) ) -> ( ( (/) ^o B ) ^o C ) = (/) ) |
| 33 |
32
|
an4s |
|- ( ( ( B e. On /\ C e. On ) /\ ( (/) e. B /\ (/) e. C ) ) -> ( ( (/) ^o B ) ^o C ) = (/) ) |
| 34 |
|
om00el |
|- ( ( B e. On /\ C e. On ) -> ( (/) e. ( B .o C ) <-> ( (/) e. B /\ (/) e. C ) ) ) |
| 35 |
|
omcl |
|- ( ( B e. On /\ C e. On ) -> ( B .o C ) e. On ) |
| 36 |
|
oe0m1 |
|- ( ( B .o C ) e. On -> ( (/) e. ( B .o C ) <-> ( (/) ^o ( B .o C ) ) = (/) ) ) |
| 37 |
35 36
|
syl |
|- ( ( B e. On /\ C e. On ) -> ( (/) e. ( B .o C ) <-> ( (/) ^o ( B .o C ) ) = (/) ) ) |
| 38 |
34 37
|
bitr3d |
|- ( ( B e. On /\ C e. On ) -> ( ( (/) e. B /\ (/) e. C ) <-> ( (/) ^o ( B .o C ) ) = (/) ) ) |
| 39 |
38
|
biimpa |
|- ( ( ( B e. On /\ C e. On ) /\ ( (/) e. B /\ (/) e. C ) ) -> ( (/) ^o ( B .o C ) ) = (/) ) |
| 40 |
33 39
|
eqtr4d |
|- ( ( ( B e. On /\ C e. On ) /\ ( (/) e. B /\ (/) e. C ) ) -> ( ( (/) ^o B ) ^o C ) = ( (/) ^o ( B .o C ) ) ) |
| 41 |
40
|
ex |
|- ( ( B e. On /\ C e. On ) -> ( ( (/) e. B /\ (/) e. C ) -> ( ( (/) ^o B ) ^o C ) = ( (/) ^o ( B .o C ) ) ) ) |
| 42 |
26 41
|
sylbird |
|- ( ( B e. On /\ C e. On ) -> ( -. ( B = (/) \/ C = (/) ) -> ( ( (/) ^o B ) ^o C ) = ( (/) ^o ( B .o C ) ) ) ) |
| 43 |
42
|
imp |
|- ( ( ( B e. On /\ C e. On ) /\ -. ( B = (/) \/ C = (/) ) ) -> ( ( (/) ^o B ) ^o C ) = ( (/) ^o ( B .o C ) ) ) |
| 44 |
21 43
|
pm2.61dan |
|- ( ( B e. On /\ C e. On ) -> ( ( (/) ^o B ) ^o C ) = ( (/) ^o ( B .o C ) ) ) |
| 45 |
|
oveq1 |
|- ( A = (/) -> ( A ^o B ) = ( (/) ^o B ) ) |
| 46 |
45
|
oveq1d |
|- ( A = (/) -> ( ( A ^o B ) ^o C ) = ( ( (/) ^o B ) ^o C ) ) |
| 47 |
|
oveq1 |
|- ( A = (/) -> ( A ^o ( B .o C ) ) = ( (/) ^o ( B .o C ) ) ) |
| 48 |
46 47
|
eqeq12d |
|- ( A = (/) -> ( ( ( A ^o B ) ^o C ) = ( A ^o ( B .o C ) ) <-> ( ( (/) ^o B ) ^o C ) = ( (/) ^o ( B .o C ) ) ) ) |
| 49 |
44 48
|
imbitrrid |
|- ( A = (/) -> ( ( B e. On /\ C e. On ) -> ( ( A ^o B ) ^o C ) = ( A ^o ( B .o C ) ) ) ) |
| 50 |
49
|
impcom |
|- ( ( ( B e. On /\ C e. On ) /\ A = (/) ) -> ( ( A ^o B ) ^o C ) = ( A ^o ( B .o C ) ) ) |
| 51 |
|
oveq1 |
|- ( A = if ( ( A e. On /\ (/) e. A ) , A , 1o ) -> ( A ^o B ) = ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) ^o B ) ) |
| 52 |
51
|
oveq1d |
|- ( A = if ( ( A e. On /\ (/) e. A ) , A , 1o ) -> ( ( A ^o B ) ^o C ) = ( ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) ^o B ) ^o C ) ) |
| 53 |
|
oveq1 |
|- ( A = if ( ( A e. On /\ (/) e. A ) , A , 1o ) -> ( A ^o ( B .o C ) ) = ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) ^o ( B .o C ) ) ) |
| 54 |
52 53
|
eqeq12d |
|- ( A = if ( ( A e. On /\ (/) e. A ) , A , 1o ) -> ( ( ( A ^o B ) ^o C ) = ( A ^o ( B .o C ) ) <-> ( ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) ^o B ) ^o C ) = ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) ^o ( B .o C ) ) ) ) |
| 55 |
54
|
imbi2d |
|- ( A = if ( ( A e. On /\ (/) e. A ) , A , 1o ) -> ( ( ( B e. On /\ C e. On ) -> ( ( A ^o B ) ^o C ) = ( A ^o ( B .o C ) ) ) <-> ( ( B e. On /\ C e. On ) -> ( ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) ^o B ) ^o C ) = ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) ^o ( B .o C ) ) ) ) ) |
| 56 |
|
eleq1 |
|- ( A = if ( ( A e. On /\ (/) e. A ) , A , 1o ) -> ( A e. On <-> if ( ( A e. On /\ (/) e. A ) , A , 1o ) e. On ) ) |
| 57 |
|
eleq2 |
|- ( A = if ( ( A e. On /\ (/) e. A ) , A , 1o ) -> ( (/) e. A <-> (/) e. if ( ( A e. On /\ (/) e. A ) , A , 1o ) ) ) |
| 58 |
56 57
|
anbi12d |
|- ( A = if ( ( A e. On /\ (/) e. A ) , A , 1o ) -> ( ( A e. On /\ (/) e. A ) <-> ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) e. On /\ (/) e. if ( ( A e. On /\ (/) e. A ) , A , 1o ) ) ) ) |
| 59 |
|
eleq1 |
|- ( 1o = if ( ( A e. On /\ (/) e. A ) , A , 1o ) -> ( 1o e. On <-> if ( ( A e. On /\ (/) e. A ) , A , 1o ) e. On ) ) |
| 60 |
|
eleq2 |
|- ( 1o = if ( ( A e. On /\ (/) e. A ) , A , 1o ) -> ( (/) e. 1o <-> (/) e. if ( ( A e. On /\ (/) e. A ) , A , 1o ) ) ) |
| 61 |
59 60
|
anbi12d |
|- ( 1o = if ( ( A e. On /\ (/) e. A ) , A , 1o ) -> ( ( 1o e. On /\ (/) e. 1o ) <-> ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) e. On /\ (/) e. if ( ( A e. On /\ (/) e. A ) , A , 1o ) ) ) ) |
| 62 |
|
1on |
|- 1o e. On |
| 63 |
|
0lt1o |
|- (/) e. 1o |
| 64 |
62 63
|
pm3.2i |
|- ( 1o e. On /\ (/) e. 1o ) |
| 65 |
58 61 64
|
elimhyp |
|- ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) e. On /\ (/) e. if ( ( A e. On /\ (/) e. A ) , A , 1o ) ) |
| 66 |
65
|
simpli |
|- if ( ( A e. On /\ (/) e. A ) , A , 1o ) e. On |
| 67 |
65
|
simpri |
|- (/) e. if ( ( A e. On /\ (/) e. A ) , A , 1o ) |
| 68 |
66 67
|
oeoelem |
|- ( ( B e. On /\ C e. On ) -> ( ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) ^o B ) ^o C ) = ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) ^o ( B .o C ) ) ) |
| 69 |
55 68
|
dedth |
|- ( ( A e. On /\ (/) e. A ) -> ( ( B e. On /\ C e. On ) -> ( ( A ^o B ) ^o C ) = ( A ^o ( B .o C ) ) ) ) |
| 70 |
69
|
imp |
|- ( ( ( A e. On /\ (/) e. A ) /\ ( B e. On /\ C e. On ) ) -> ( ( A ^o B ) ^o C ) = ( A ^o ( B .o C ) ) ) |
| 71 |
70
|
an32s |
|- ( ( ( A e. On /\ ( B e. On /\ C e. On ) ) /\ (/) e. A ) -> ( ( A ^o B ) ^o C ) = ( A ^o ( B .o C ) ) ) |
| 72 |
50 71
|
oe0lem |
|- ( ( A e. On /\ ( B e. On /\ C e. On ) ) -> ( ( A ^o B ) ^o C ) = ( A ^o ( B .o C ) ) ) |
| 73 |
72
|
3impb |
|- ( ( A e. On /\ B e. On /\ C e. On ) -> ( ( A ^o B ) ^o C ) = ( A ^o ( B .o C ) ) ) |