| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
⊢ ( 𝐵 = ∅ → ( ∅ ↑o 𝐵 ) = ( ∅ ↑o ∅ ) ) |
| 2 |
|
oe0m0 |
⊢ ( ∅ ↑o ∅ ) = 1o |
| 3 |
1 2
|
eqtrdi |
⊢ ( 𝐵 = ∅ → ( ∅ ↑o 𝐵 ) = 1o ) |
| 4 |
3
|
oveq1d |
⊢ ( 𝐵 = ∅ → ( ( ∅ ↑o 𝐵 ) ↑o 𝐶 ) = ( 1o ↑o 𝐶 ) ) |
| 5 |
|
oe1m |
⊢ ( 𝐶 ∈ On → ( 1o ↑o 𝐶 ) = 1o ) |
| 6 |
4 5
|
sylan9eqr |
⊢ ( ( 𝐶 ∈ On ∧ 𝐵 = ∅ ) → ( ( ∅ ↑o 𝐵 ) ↑o 𝐶 ) = 1o ) |
| 7 |
6
|
adantll |
⊢ ( ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝐵 = ∅ ) → ( ( ∅ ↑o 𝐵 ) ↑o 𝐶 ) = 1o ) |
| 8 |
|
oveq2 |
⊢ ( 𝐶 = ∅ → ( ( ∅ ↑o 𝐵 ) ↑o 𝐶 ) = ( ( ∅ ↑o 𝐵 ) ↑o ∅ ) ) |
| 9 |
|
0elon |
⊢ ∅ ∈ On |
| 10 |
|
oecl |
⊢ ( ( ∅ ∈ On ∧ 𝐵 ∈ On ) → ( ∅ ↑o 𝐵 ) ∈ On ) |
| 11 |
9 10
|
mpan |
⊢ ( 𝐵 ∈ On → ( ∅ ↑o 𝐵 ) ∈ On ) |
| 12 |
|
oe0 |
⊢ ( ( ∅ ↑o 𝐵 ) ∈ On → ( ( ∅ ↑o 𝐵 ) ↑o ∅ ) = 1o ) |
| 13 |
11 12
|
syl |
⊢ ( 𝐵 ∈ On → ( ( ∅ ↑o 𝐵 ) ↑o ∅ ) = 1o ) |
| 14 |
8 13
|
sylan9eqr |
⊢ ( ( 𝐵 ∈ On ∧ 𝐶 = ∅ ) → ( ( ∅ ↑o 𝐵 ) ↑o 𝐶 ) = 1o ) |
| 15 |
14
|
adantlr |
⊢ ( ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝐶 = ∅ ) → ( ( ∅ ↑o 𝐵 ) ↑o 𝐶 ) = 1o ) |
| 16 |
7 15
|
jaodan |
⊢ ( ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ ( 𝐵 = ∅ ∨ 𝐶 = ∅ ) ) → ( ( ∅ ↑o 𝐵 ) ↑o 𝐶 ) = 1o ) |
| 17 |
|
om00 |
⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐵 ·o 𝐶 ) = ∅ ↔ ( 𝐵 = ∅ ∨ 𝐶 = ∅ ) ) ) |
| 18 |
17
|
biimpar |
⊢ ( ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ ( 𝐵 = ∅ ∨ 𝐶 = ∅ ) ) → ( 𝐵 ·o 𝐶 ) = ∅ ) |
| 19 |
18
|
oveq2d |
⊢ ( ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ ( 𝐵 = ∅ ∨ 𝐶 = ∅ ) ) → ( ∅ ↑o ( 𝐵 ·o 𝐶 ) ) = ( ∅ ↑o ∅ ) ) |
| 20 |
19 2
|
eqtrdi |
⊢ ( ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ ( 𝐵 = ∅ ∨ 𝐶 = ∅ ) ) → ( ∅ ↑o ( 𝐵 ·o 𝐶 ) ) = 1o ) |
| 21 |
16 20
|
eqtr4d |
⊢ ( ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ ( 𝐵 = ∅ ∨ 𝐶 = ∅ ) ) → ( ( ∅ ↑o 𝐵 ) ↑o 𝐶 ) = ( ∅ ↑o ( 𝐵 ·o 𝐶 ) ) ) |
| 22 |
|
on0eln0 |
⊢ ( 𝐵 ∈ On → ( ∅ ∈ 𝐵 ↔ 𝐵 ≠ ∅ ) ) |
| 23 |
|
on0eln0 |
⊢ ( 𝐶 ∈ On → ( ∅ ∈ 𝐶 ↔ 𝐶 ≠ ∅ ) ) |
| 24 |
22 23
|
bi2anan9 |
⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( ∅ ∈ 𝐵 ∧ ∅ ∈ 𝐶 ) ↔ ( 𝐵 ≠ ∅ ∧ 𝐶 ≠ ∅ ) ) ) |
| 25 |
|
neanior |
⊢ ( ( 𝐵 ≠ ∅ ∧ 𝐶 ≠ ∅ ) ↔ ¬ ( 𝐵 = ∅ ∨ 𝐶 = ∅ ) ) |
| 26 |
24 25
|
bitrdi |
⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( ∅ ∈ 𝐵 ∧ ∅ ∈ 𝐶 ) ↔ ¬ ( 𝐵 = ∅ ∨ 𝐶 = ∅ ) ) ) |
| 27 |
|
oe0m1 |
⊢ ( 𝐵 ∈ On → ( ∅ ∈ 𝐵 ↔ ( ∅ ↑o 𝐵 ) = ∅ ) ) |
| 28 |
27
|
biimpa |
⊢ ( ( 𝐵 ∈ On ∧ ∅ ∈ 𝐵 ) → ( ∅ ↑o 𝐵 ) = ∅ ) |
| 29 |
28
|
oveq1d |
⊢ ( ( 𝐵 ∈ On ∧ ∅ ∈ 𝐵 ) → ( ( ∅ ↑o 𝐵 ) ↑o 𝐶 ) = ( ∅ ↑o 𝐶 ) ) |
| 30 |
|
oe0m1 |
⊢ ( 𝐶 ∈ On → ( ∅ ∈ 𝐶 ↔ ( ∅ ↑o 𝐶 ) = ∅ ) ) |
| 31 |
30
|
biimpa |
⊢ ( ( 𝐶 ∈ On ∧ ∅ ∈ 𝐶 ) → ( ∅ ↑o 𝐶 ) = ∅ ) |
| 32 |
29 31
|
sylan9eq |
⊢ ( ( ( 𝐵 ∈ On ∧ ∅ ∈ 𝐵 ) ∧ ( 𝐶 ∈ On ∧ ∅ ∈ 𝐶 ) ) → ( ( ∅ ↑o 𝐵 ) ↑o 𝐶 ) = ∅ ) |
| 33 |
32
|
an4s |
⊢ ( ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ ( ∅ ∈ 𝐵 ∧ ∅ ∈ 𝐶 ) ) → ( ( ∅ ↑o 𝐵 ) ↑o 𝐶 ) = ∅ ) |
| 34 |
|
om00el |
⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ∅ ∈ ( 𝐵 ·o 𝐶 ) ↔ ( ∅ ∈ 𝐵 ∧ ∅ ∈ 𝐶 ) ) ) |
| 35 |
|
omcl |
⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐵 ·o 𝐶 ) ∈ On ) |
| 36 |
|
oe0m1 |
⊢ ( ( 𝐵 ·o 𝐶 ) ∈ On → ( ∅ ∈ ( 𝐵 ·o 𝐶 ) ↔ ( ∅ ↑o ( 𝐵 ·o 𝐶 ) ) = ∅ ) ) |
| 37 |
35 36
|
syl |
⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ∅ ∈ ( 𝐵 ·o 𝐶 ) ↔ ( ∅ ↑o ( 𝐵 ·o 𝐶 ) ) = ∅ ) ) |
| 38 |
34 37
|
bitr3d |
⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( ∅ ∈ 𝐵 ∧ ∅ ∈ 𝐶 ) ↔ ( ∅ ↑o ( 𝐵 ·o 𝐶 ) ) = ∅ ) ) |
| 39 |
38
|
biimpa |
⊢ ( ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ ( ∅ ∈ 𝐵 ∧ ∅ ∈ 𝐶 ) ) → ( ∅ ↑o ( 𝐵 ·o 𝐶 ) ) = ∅ ) |
| 40 |
33 39
|
eqtr4d |
⊢ ( ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ ( ∅ ∈ 𝐵 ∧ ∅ ∈ 𝐶 ) ) → ( ( ∅ ↑o 𝐵 ) ↑o 𝐶 ) = ( ∅ ↑o ( 𝐵 ·o 𝐶 ) ) ) |
| 41 |
40
|
ex |
⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( ∅ ∈ 𝐵 ∧ ∅ ∈ 𝐶 ) → ( ( ∅ ↑o 𝐵 ) ↑o 𝐶 ) = ( ∅ ↑o ( 𝐵 ·o 𝐶 ) ) ) ) |
| 42 |
26 41
|
sylbird |
⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ¬ ( 𝐵 = ∅ ∨ 𝐶 = ∅ ) → ( ( ∅ ↑o 𝐵 ) ↑o 𝐶 ) = ( ∅ ↑o ( 𝐵 ·o 𝐶 ) ) ) ) |
| 43 |
42
|
imp |
⊢ ( ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ ¬ ( 𝐵 = ∅ ∨ 𝐶 = ∅ ) ) → ( ( ∅ ↑o 𝐵 ) ↑o 𝐶 ) = ( ∅ ↑o ( 𝐵 ·o 𝐶 ) ) ) |
| 44 |
21 43
|
pm2.61dan |
⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( ∅ ↑o 𝐵 ) ↑o 𝐶 ) = ( ∅ ↑o ( 𝐵 ·o 𝐶 ) ) ) |
| 45 |
|
oveq1 |
⊢ ( 𝐴 = ∅ → ( 𝐴 ↑o 𝐵 ) = ( ∅ ↑o 𝐵 ) ) |
| 46 |
45
|
oveq1d |
⊢ ( 𝐴 = ∅ → ( ( 𝐴 ↑o 𝐵 ) ↑o 𝐶 ) = ( ( ∅ ↑o 𝐵 ) ↑o 𝐶 ) ) |
| 47 |
|
oveq1 |
⊢ ( 𝐴 = ∅ → ( 𝐴 ↑o ( 𝐵 ·o 𝐶 ) ) = ( ∅ ↑o ( 𝐵 ·o 𝐶 ) ) ) |
| 48 |
46 47
|
eqeq12d |
⊢ ( 𝐴 = ∅ → ( ( ( 𝐴 ↑o 𝐵 ) ↑o 𝐶 ) = ( 𝐴 ↑o ( 𝐵 ·o 𝐶 ) ) ↔ ( ( ∅ ↑o 𝐵 ) ↑o 𝐶 ) = ( ∅ ↑o ( 𝐵 ·o 𝐶 ) ) ) ) |
| 49 |
44 48
|
imbitrrid |
⊢ ( 𝐴 = ∅ → ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐴 ↑o 𝐵 ) ↑o 𝐶 ) = ( 𝐴 ↑o ( 𝐵 ·o 𝐶 ) ) ) ) |
| 50 |
49
|
impcom |
⊢ ( ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝐴 = ∅ ) → ( ( 𝐴 ↑o 𝐵 ) ↑o 𝐶 ) = ( 𝐴 ↑o ( 𝐵 ·o 𝐶 ) ) ) |
| 51 |
|
oveq1 |
⊢ ( 𝐴 = if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) → ( 𝐴 ↑o 𝐵 ) = ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o 𝐵 ) ) |
| 52 |
51
|
oveq1d |
⊢ ( 𝐴 = if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) → ( ( 𝐴 ↑o 𝐵 ) ↑o 𝐶 ) = ( ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o 𝐵 ) ↑o 𝐶 ) ) |
| 53 |
|
oveq1 |
⊢ ( 𝐴 = if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) → ( 𝐴 ↑o ( 𝐵 ·o 𝐶 ) ) = ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o ( 𝐵 ·o 𝐶 ) ) ) |
| 54 |
52 53
|
eqeq12d |
⊢ ( 𝐴 = if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) → ( ( ( 𝐴 ↑o 𝐵 ) ↑o 𝐶 ) = ( 𝐴 ↑o ( 𝐵 ·o 𝐶 ) ) ↔ ( ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o 𝐵 ) ↑o 𝐶 ) = ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o ( 𝐵 ·o 𝐶 ) ) ) ) |
| 55 |
54
|
imbi2d |
⊢ ( 𝐴 = if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) → ( ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐴 ↑o 𝐵 ) ↑o 𝐶 ) = ( 𝐴 ↑o ( 𝐵 ·o 𝐶 ) ) ) ↔ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o 𝐵 ) ↑o 𝐶 ) = ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o ( 𝐵 ·o 𝐶 ) ) ) ) ) |
| 56 |
|
eleq1 |
⊢ ( 𝐴 = if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) → ( 𝐴 ∈ On ↔ if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ∈ On ) ) |
| 57 |
|
eleq2 |
⊢ ( 𝐴 = if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) → ( ∅ ∈ 𝐴 ↔ ∅ ∈ if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ) ) |
| 58 |
56 57
|
anbi12d |
⊢ ( 𝐴 = if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) → ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) ↔ ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ∈ On ∧ ∅ ∈ if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ) ) ) |
| 59 |
|
eleq1 |
⊢ ( 1o = if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) → ( 1o ∈ On ↔ if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ∈ On ) ) |
| 60 |
|
eleq2 |
⊢ ( 1o = if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) → ( ∅ ∈ 1o ↔ ∅ ∈ if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ) ) |
| 61 |
59 60
|
anbi12d |
⊢ ( 1o = if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) → ( ( 1o ∈ On ∧ ∅ ∈ 1o ) ↔ ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ∈ On ∧ ∅ ∈ if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ) ) ) |
| 62 |
|
1on |
⊢ 1o ∈ On |
| 63 |
|
0lt1o |
⊢ ∅ ∈ 1o |
| 64 |
62 63
|
pm3.2i |
⊢ ( 1o ∈ On ∧ ∅ ∈ 1o ) |
| 65 |
58 61 64
|
elimhyp |
⊢ ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ∈ On ∧ ∅ ∈ if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ) |
| 66 |
65
|
simpli |
⊢ if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ∈ On |
| 67 |
65
|
simpri |
⊢ ∅ ∈ if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) |
| 68 |
66 67
|
oeoelem |
⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o 𝐵 ) ↑o 𝐶 ) = ( if ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) , 𝐴 , 1o ) ↑o ( 𝐵 ·o 𝐶 ) ) ) |
| 69 |
55 68
|
dedth |
⊢ ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) → ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐴 ↑o 𝐵 ) ↑o 𝐶 ) = ( 𝐴 ↑o ( 𝐵 ·o 𝐶 ) ) ) ) |
| 70 |
69
|
imp |
⊢ ( ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) ) → ( ( 𝐴 ↑o 𝐵 ) ↑o 𝐶 ) = ( 𝐴 ↑o ( 𝐵 ·o 𝐶 ) ) ) |
| 71 |
70
|
an32s |
⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) ) ∧ ∅ ∈ 𝐴 ) → ( ( 𝐴 ↑o 𝐵 ) ↑o 𝐶 ) = ( 𝐴 ↑o ( 𝐵 ·o 𝐶 ) ) ) |
| 72 |
50 71
|
oe0lem |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) ) → ( ( 𝐴 ↑o 𝐵 ) ↑o 𝐶 ) = ( 𝐴 ↑o ( 𝐵 ·o 𝐶 ) ) ) |
| 73 |
72
|
3impb |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐴 ↑o 𝐵 ) ↑o 𝐶 ) = ( 𝐴 ↑o ( 𝐵 ·o 𝐶 ) ) ) |