Metamath Proof Explorer


Theorem omxpenlem

Description: Lemma for omxpen . (Contributed by Mario Carneiro, 3-Mar-2013) (Revised by Mario Carneiro, 25-May-2015)

Ref Expression
Hypothesis omxpenlem.1 F = x B , y A A 𝑜 x + 𝑜 y
Assertion omxpenlem A On B On F : B × A 1-1 onto A 𝑜 B

Proof

Step Hyp Ref Expression
1 omxpenlem.1 F = x B , y A A 𝑜 x + 𝑜 y
2 eloni B On Ord B
3 2 ad2antlr A On B On x B y A Ord B
4 simprl A On B On x B y A x B
5 ordsucss Ord B x B suc x B
6 3 4 5 sylc A On B On x B y A suc x B
7 onelon B On x B x On
8 7 ad2ant2lr A On B On x B y A x On
9 suceloni x On suc x On
10 8 9 syl A On B On x B y A suc x On
11 simplr A On B On x B y A B On
12 simpll A On B On x B y A A On
13 omwordi suc x On B On A On suc x B A 𝑜 suc x A 𝑜 B
14 10 11 12 13 syl3anc A On B On x B y A suc x B A 𝑜 suc x A 𝑜 B
15 6 14 mpd A On B On x B y A A 𝑜 suc x A 𝑜 B
16 simprr A On B On x B y A y A
17 onelon A On y A y On
18 17 ad2ant2rl A On B On x B y A y On
19 omcl A On x On A 𝑜 x On
20 12 8 19 syl2anc A On B On x B y A A 𝑜 x On
21 oaord y On A On A 𝑜 x On y A A 𝑜 x + 𝑜 y A 𝑜 x + 𝑜 A
22 18 12 20 21 syl3anc A On B On x B y A y A A 𝑜 x + 𝑜 y A 𝑜 x + 𝑜 A
23 16 22 mpbid A On B On x B y A A 𝑜 x + 𝑜 y A 𝑜 x + 𝑜 A
24 omsuc A On x On A 𝑜 suc x = A 𝑜 x + 𝑜 A
25 12 8 24 syl2anc A On B On x B y A A 𝑜 suc x = A 𝑜 x + 𝑜 A
26 23 25 eleqtrrd A On B On x B y A A 𝑜 x + 𝑜 y A 𝑜 suc x
27 15 26 sseldd A On B On x B y A A 𝑜 x + 𝑜 y A 𝑜 B
28 27 ralrimivva A On B On x B y A A 𝑜 x + 𝑜 y A 𝑜 B
29 1 fmpo x B y A A 𝑜 x + 𝑜 y A 𝑜 B F : B × A A 𝑜 B
30 28 29 sylib A On B On F : B × A A 𝑜 B
31 30 ffnd A On B On F Fn B × A
32 simpll A On B On m A 𝑜 B A On
33 omcl A On B On A 𝑜 B On
34 onelon A 𝑜 B On m A 𝑜 B m On
35 33 34 sylan A On B On m A 𝑜 B m On
36 noel ¬ m
37 oveq1 A = A 𝑜 B = 𝑜 B
38 om0r B On 𝑜 B =
39 37 38 sylan9eqr B On A = A 𝑜 B =
40 39 eleq2d B On A = m A 𝑜 B m
41 36 40 mtbiri B On A = ¬ m A 𝑜 B
42 41 ex B On A = ¬ m A 𝑜 B
43 42 necon2ad B On m A 𝑜 B A
44 43 adantl A On B On m A 𝑜 B A
45 44 imp A On B On m A 𝑜 B A
46 omeu A On m On A ∃! n x On y A n = x y A 𝑜 x + 𝑜 y = m
47 32 35 45 46 syl3anc A On B On m A 𝑜 B ∃! n x On y A n = x y A 𝑜 x + 𝑜 y = m
48 vex m V
49 vex n V
50 48 49 brcnv m F -1 n n F m
51 eleq1 m = A 𝑜 x + 𝑜 y m A 𝑜 B A 𝑜 x + 𝑜 y A 𝑜 B
52 51 biimpac m A 𝑜 B m = A 𝑜 x + 𝑜 y A 𝑜 x + 𝑜 y A 𝑜 B
53 7 ex B On x B x On
54 53 ad2antlr A On B On A 𝑜 x + 𝑜 y A 𝑜 B y A x B x On
55 simplll A On B On A 𝑜 x + 𝑜 y A 𝑜 B y A x On A On
56 simpr A On B On A 𝑜 x + 𝑜 y A 𝑜 B y A x On x On
57 55 56 19 syl2anc A On B On A 𝑜 x + 𝑜 y A 𝑜 B y A x On A 𝑜 x On
58 simplrr A On B On A 𝑜 x + 𝑜 y A 𝑜 B y A x On y A
59 55 58 17 syl2anc A On B On A 𝑜 x + 𝑜 y A 𝑜 B y A x On y On
60 oaword1 A 𝑜 x On y On A 𝑜 x A 𝑜 x + 𝑜 y
61 57 59 60 syl2anc A On B On A 𝑜 x + 𝑜 y A 𝑜 B y A x On A 𝑜 x A 𝑜 x + 𝑜 y
62 simplrl A On B On A 𝑜 x + 𝑜 y A 𝑜 B y A x On A 𝑜 x + 𝑜 y A 𝑜 B
63 33 ad2antrr A On B On A 𝑜 x + 𝑜 y A 𝑜 B y A x On A 𝑜 B On
64 ontr2 A 𝑜 x On A 𝑜 B On A 𝑜 x A 𝑜 x + 𝑜 y A 𝑜 x + 𝑜 y A 𝑜 B A 𝑜 x A 𝑜 B
65 57 63 64 syl2anc A On B On A 𝑜 x + 𝑜 y A 𝑜 B y A x On A 𝑜 x A 𝑜 x + 𝑜 y A 𝑜 x + 𝑜 y A 𝑜 B A 𝑜 x A 𝑜 B
66 61 62 65 mp2and A On B On A 𝑜 x + 𝑜 y A 𝑜 B y A x On A 𝑜 x A 𝑜 B
67 simpllr A On B On A 𝑜 x + 𝑜 y A 𝑜 B y A x On B On
68 62 ne0d A On B On A 𝑜 x + 𝑜 y A 𝑜 B y A x On A 𝑜 B
69 on0eln0 A 𝑜 B On A 𝑜 B A 𝑜 B
70 63 69 syl A On B On A 𝑜 x + 𝑜 y A 𝑜 B y A x On A 𝑜 B A 𝑜 B
71 68 70 mpbird A On B On A 𝑜 x + 𝑜 y A 𝑜 B y A x On A 𝑜 B
72 om00el A On B On A 𝑜 B A B
73 72 ad2antrr A On B On A 𝑜 x + 𝑜 y A 𝑜 B y A x On A 𝑜 B A B
74 71 73 mpbid A On B On A 𝑜 x + 𝑜 y A 𝑜 B y A x On A B
75 74 simpld A On B On A 𝑜 x + 𝑜 y A 𝑜 B y A x On A
76 omord2 x On B On A On A x B A 𝑜 x A 𝑜 B
77 56 67 55 75 76 syl31anc A On B On A 𝑜 x + 𝑜 y A 𝑜 B y A x On x B A 𝑜 x A 𝑜 B
78 66 77 mpbird A On B On A 𝑜 x + 𝑜 y A 𝑜 B y A x On x B
79 78 ex A On B On A 𝑜 x + 𝑜 y A 𝑜 B y A x On x B
80 54 79 impbid A On B On A 𝑜 x + 𝑜 y A 𝑜 B y A x B x On
81 80 expr A On B On A 𝑜 x + 𝑜 y A 𝑜 B y A x B x On
82 81 pm5.32rd A On B On A 𝑜 x + 𝑜 y A 𝑜 B x B y A x On y A
83 52 82 sylan2 A On B On m A 𝑜 B m = A 𝑜 x + 𝑜 y x B y A x On y A
84 83 expr A On B On m A 𝑜 B m = A 𝑜 x + 𝑜 y x B y A x On y A
85 84 pm5.32rd A On B On m A 𝑜 B x B y A m = A 𝑜 x + 𝑜 y x On y A m = A 𝑜 x + 𝑜 y
86 eqcom m = A 𝑜 x + 𝑜 y A 𝑜 x + 𝑜 y = m
87 86 anbi2i x On y A m = A 𝑜 x + 𝑜 y x On y A A 𝑜 x + 𝑜 y = m
88 85 87 bitrdi A On B On m A 𝑜 B x B y A m = A 𝑜 x + 𝑜 y x On y A A 𝑜 x + 𝑜 y = m
89 88 anbi2d A On B On m A 𝑜 B n = x y x B y A m = A 𝑜 x + 𝑜 y n = x y x On y A A 𝑜 x + 𝑜 y = m
90 an12 n = x y x On y A A 𝑜 x + 𝑜 y = m x On y A n = x y A 𝑜 x + 𝑜 y = m
91 89 90 bitrdi A On B On m A 𝑜 B n = x y x B y A m = A 𝑜 x + 𝑜 y x On y A n = x y A 𝑜 x + 𝑜 y = m
92 91 2exbidv A On B On m A 𝑜 B x y n = x y x B y A m = A 𝑜 x + 𝑜 y x y x On y A n = x y A 𝑜 x + 𝑜 y = m
93 df-mpo x B , y A A 𝑜 x + 𝑜 y = x y m | x B y A m = A 𝑜 x + 𝑜 y
94 dfoprab2 x y m | x B y A m = A 𝑜 x + 𝑜 y = n m | x y n = x y x B y A m = A 𝑜 x + 𝑜 y
95 1 93 94 3eqtri F = n m | x y n = x y x B y A m = A 𝑜 x + 𝑜 y
96 95 breqi n F m n n m | x y n = x y x B y A m = A 𝑜 x + 𝑜 y m
97 df-br n n m | x y n = x y x B y A m = A 𝑜 x + 𝑜 y m n m n m | x y n = x y x B y A m = A 𝑜 x + 𝑜 y
98 opabidw n m n m | x y n = x y x B y A m = A 𝑜 x + 𝑜 y x y n = x y x B y A m = A 𝑜 x + 𝑜 y
99 96 97 98 3bitri n F m x y n = x y x B y A m = A 𝑜 x + 𝑜 y
100 r2ex x On y A n = x y A 𝑜 x + 𝑜 y = m x y x On y A n = x y A 𝑜 x + 𝑜 y = m
101 92 99 100 3bitr4g A On B On m A 𝑜 B n F m x On y A n = x y A 𝑜 x + 𝑜 y = m
102 50 101 bitrid A On B On m A 𝑜 B m F -1 n x On y A n = x y A 𝑜 x + 𝑜 y = m
103 102 eubidv A On B On m A 𝑜 B ∃! n m F -1 n ∃! n x On y A n = x y A 𝑜 x + 𝑜 y = m
104 47 103 mpbird A On B On m A 𝑜 B ∃! n m F -1 n
105 104 ralrimiva A On B On m A 𝑜 B ∃! n m F -1 n
106 fnres F -1 A 𝑜 B Fn A 𝑜 B m A 𝑜 B ∃! n m F -1 n
107 105 106 sylibr A On B On F -1 A 𝑜 B Fn A 𝑜 B
108 relcnv Rel F -1
109 df-rn ran F = dom F -1
110 30 frnd A On B On ran F A 𝑜 B
111 109 110 eqsstrrid A On B On dom F -1 A 𝑜 B
112 relssres Rel F -1 dom F -1 A 𝑜 B F -1 A 𝑜 B = F -1
113 108 111 112 sylancr A On B On F -1 A 𝑜 B = F -1
114 113 fneq1d A On B On F -1 A 𝑜 B Fn A 𝑜 B F -1 Fn A 𝑜 B
115 107 114 mpbid A On B On F -1 Fn A 𝑜 B
116 dff1o4 F : B × A 1-1 onto A 𝑜 B F Fn B × A F -1 Fn A 𝑜 B
117 31 115 116 sylanbrc A On B On F : B × A 1-1 onto A 𝑜 B