Metamath Proof Explorer


Theorem infxrss

Description: Larger sets of extended reals have smaller infima. (Contributed by Glauco Siliprandi, 11-Dec-2019) (Revised by AV, 13-Sep-2020)

Ref Expression
Assertion infxrss ABB*supB*<supA*<

Proof

Step Hyp Ref Expression
1 simplr ABB*xAB*
2 simpl ABB*AB
3 2 sselda ABB*xAxB
4 infxrlb B*xBsupB*<x
5 1 3 4 syl2anc ABB*xAsupB*<x
6 5 ralrimiva ABB*xAsupB*<x
7 sstr ABB*A*
8 infxrcl B*supB*<*
9 8 adantl ABB*supB*<*
10 infxrgelb A*supB*<*supB*<supA*<xAsupB*<x
11 7 9 10 syl2anc ABB*supB*<supA*<xAsupB*<x
12 6 11 mpbird ABB*supB*<supA*<