Metamath Proof Explorer


Theorem inopnd

Description: The intersection of two open sets of a topology is an open set. (Contributed by Glauco Siliprandi, 21-Dec-2024)

Ref Expression
Hypotheses inopnd.1 φJTop
inopnd.2 φAJ
inopnd.3 φBJ
Assertion inopnd φABJ

Proof

Step Hyp Ref Expression
1 inopnd.1 φJTop
2 inopnd.2 φAJ
3 inopnd.3 φBJ
4 inopn JTopAJBJABJ
5 1 2 3 4 syl3anc φABJ