Metamath Proof Explorer


Theorem int-addsimpd

Description: AdditionSimplification generator rule. (Contributed by Stanislas Polu, 7-Apr-2020)

Ref Expression
Hypotheses int-addsimpd.1 φA
int-addsimpd.2 φA=B
Assertion int-addsimpd φ0=AB

Proof

Step Hyp Ref Expression
1 int-addsimpd.1 φA
2 int-addsimpd.2 φA=B
3 1 recnd φA
4 3 2 subeq0bd φAB=0
5 4 eqcomd φ0=AB