Metamath Proof Explorer


Theorem int-addsimpd

Description: AdditionSimplification generator rule. (Contributed by Stanislas Polu, 7-Apr-2020)

Ref Expression
Hypotheses int-addsimpd.1 φ A
int-addsimpd.2 φ A = B
Assertion int-addsimpd φ 0 = A B

Proof

Step Hyp Ref Expression
1 int-addsimpd.1 φ A
2 int-addsimpd.2 φ A = B
3 1 recnd φ A
4 3 2 subeq0bd φ A B = 0
5 4 eqcomd φ 0 = A B