Metamath Proof Explorer


Theorem int-mulsimpd

Description: MultiplicationSimplification generator rule. (Contributed by Stanislas Polu, 7-Apr-2020)

Ref Expression
Hypotheses int-mulsimpd.1 φB
int-mulsimpd.2 φA=B
int-mulsimpd.3 φB0
Assertion int-mulsimpd φ1=AB

Proof

Step Hyp Ref Expression
1 int-mulsimpd.1 φB
2 int-mulsimpd.2 φA=B
3 int-mulsimpd.3 φB0
4 1 recnd φB
5 4 3 2 diveq1bd φAB=1
6 5 eqcomd φ1=AB