Metamath Proof Explorer


Theorem intfrac

Description: Break a number into its integer part and its fractional part. (Contributed by NM, 31-Dec-2008)

Ref Expression
Assertion intfrac AA=A+Amod1

Proof

Step Hyp Ref Expression
1 modfrac AAmod1=AA
2 1 oveq2d AA+Amod1=A+A-A
3 reflcl AA
4 3 recnd AA
5 recn AA
6 4 5 pncan3d AA+A-A=A
7 2 6 eqtr2d AA=A+Amod1