Metamath Proof Explorer


Theorem intidg

Description: The intersection of all sets to which a set belongs is the singleton of that set. (Contributed by NM, 5-Jun-2009) Put in closed form and avoid ax-nul . (Revised by BJ, 17-Jan-2025)

Ref Expression
Assertion intidg AVx|Ax=A

Proof

Step Hyp Ref Expression
1 snexg AVAV
2 snidg AVAA
3 eleq2 x=AAxAA
4 1 2 3 elabd AVAx|Ax
5 intss1 Ax|Axx|AxA
6 4 5 syl AVx|AxA
7 id AxAx
8 7 ax-gen xAxAx
9 elintabg AVAx|AxxAxAx
10 8 9 mpbiri AVAx|Ax
11 10 snssd AVAx|Ax
12 6 11 eqssd AVx|Ax=A