Metamath Proof Explorer


Theorem intidOLD

Description: Obsolete version of intidg as of 18-Jan-2025. (Contributed by NM, 5-Jun-2009) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis intid.1 AV
Assertion intidOLD x|Ax=A

Proof

Step Hyp Ref Expression
1 intid.1 AV
2 snex AV
3 eleq2 x=AAxAA
4 1 snid AA
5 3 4 intmin3 AVx|AxA
6 2 5 ax-mp x|AxA
7 1 elintab Ax|AxxAxAx
8 id AxAx
9 7 8 mpgbir Ax|Ax
10 snssi Ax|AxAx|Ax
11 9 10 ax-mp Ax|Ax
12 6 11 eqssi x|Ax=A