Description: Obsolete version of intidg as of 18-Jan-2025. (Contributed by NM, 5-Jun-2009) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | intid.1 | ⊢ 𝐴 ∈ V | |
| Assertion | intidOLD | ⊢ ∩ { 𝑥 ∣ 𝐴 ∈ 𝑥 } = { 𝐴 } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intid.1 | ⊢ 𝐴 ∈ V | |
| 2 | snex | ⊢ { 𝐴 } ∈ V | |
| 3 | eleq2 | ⊢ ( 𝑥 = { 𝐴 } → ( 𝐴 ∈ 𝑥 ↔ 𝐴 ∈ { 𝐴 } ) ) | |
| 4 | 1 | snid | ⊢ 𝐴 ∈ { 𝐴 } |
| 5 | 3 4 | intmin3 | ⊢ ( { 𝐴 } ∈ V → ∩ { 𝑥 ∣ 𝐴 ∈ 𝑥 } ⊆ { 𝐴 } ) |
| 6 | 2 5 | ax-mp | ⊢ ∩ { 𝑥 ∣ 𝐴 ∈ 𝑥 } ⊆ { 𝐴 } |
| 7 | 1 | elintab | ⊢ ( 𝐴 ∈ ∩ { 𝑥 ∣ 𝐴 ∈ 𝑥 } ↔ ∀ 𝑥 ( 𝐴 ∈ 𝑥 → 𝐴 ∈ 𝑥 ) ) |
| 8 | id | ⊢ ( 𝐴 ∈ 𝑥 → 𝐴 ∈ 𝑥 ) | |
| 9 | 7 8 | mpgbir | ⊢ 𝐴 ∈ ∩ { 𝑥 ∣ 𝐴 ∈ 𝑥 } |
| 10 | snssi | ⊢ ( 𝐴 ∈ ∩ { 𝑥 ∣ 𝐴 ∈ 𝑥 } → { 𝐴 } ⊆ ∩ { 𝑥 ∣ 𝐴 ∈ 𝑥 } ) | |
| 11 | 9 10 | ax-mp | ⊢ { 𝐴 } ⊆ ∩ { 𝑥 ∣ 𝐴 ∈ 𝑥 } |
| 12 | 6 11 | eqssi | ⊢ ∩ { 𝑥 ∣ 𝐴 ∈ 𝑥 } = { 𝐴 } |