Metamath Proof Explorer


Theorem intprOLD

Description: Obsolete version of intpr as of 1-Sep-2024. (Contributed by NM, 14-Oct-1999) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses intpr.1 AV
intpr.2 BV
Assertion intprOLD AB=AB

Proof

Step Hyp Ref Expression
1 intpr.1 AV
2 intpr.2 BV
3 19.26 yy=Axyy=Bxyyy=Axyyy=Bxy
4 vex yV
5 4 elpr yABy=Ay=B
6 5 imbi1i yABxyy=Ay=Bxy
7 jaob y=Ay=Bxyy=Axyy=Bxy
8 6 7 bitri yABxyy=Axyy=Bxy
9 8 albii yyABxyyy=Axyy=Bxy
10 1 clel4 xAyy=Axy
11 2 clel4 xByy=Bxy
12 10 11 anbi12i xAxByy=Axyyy=Bxy
13 3 9 12 3bitr4i yyABxyxAxB
14 vex xV
15 14 elint xAByyABxy
16 elin xABxAxB
17 13 15 16 3bitr4i xABxAB
18 17 eqriv AB=AB