Metamath Proof Explorer


Theorem inundif

Description: The intersection and class difference of a class with another class unite to give the original class. (Contributed by Paul Chapman, 5-Jun-2009) (Proof shortened by Andrew Salmon, 26-Jun-2011)

Ref Expression
Assertion inundif ABAB=A

Proof

Step Hyp Ref Expression
1 elin xABxAxB
2 eldif xABxA¬xB
3 1 2 orbi12i xABxABxAxBxA¬xB
4 pm4.42 xAxAxBxA¬xB
5 3 4 bitr4i xABxABxA
6 5 uneqri ABAB=A