Metamath Proof Explorer


Theorem invdisj

Description: If there is a function C ( y ) such that C ( y ) = x for all y e. B ( x ) , then the sets B ( x ) for distinct x e. A are disjoint. (Contributed by Mario Carneiro, 10-Dec-2016)

Ref Expression
Assertion invdisj xAyBC=xDisjxAB

Proof

Step Hyp Ref Expression
1 nfra2w yxAyBC=x
2 df-ral xAyBC=xxxAyBC=x
3 rsp yBC=xyBC=x
4 eqcom C=xx=C
5 3 4 imbitrdi yBC=xyBx=C
6 5 imim2i xAyBC=xxAyBx=C
7 6 impd xAyBC=xxAyBx=C
8 7 alimi xxAyBC=xxxAyBx=C
9 2 8 sylbi xAyBC=xxxAyBx=C
10 mo2icl xxAyBx=C*xxAyB
11 9 10 syl xAyBC=x*xxAyB
12 1 11 alrimi xAyBC=xy*xxAyB
13 dfdisj2 DisjxABy*xxAyB
14 12 13 sylibr xAyBC=xDisjxAB