Metamath Proof Explorer


Theorem invid

Description: The inverse of the identity is the identity. (Contributed by AV, 8-Apr-2020)

Ref Expression
Hypotheses invid.b B=BaseC
invid.i I=IdC
invid.c φCCat
invid.x φXB
Assertion invid φIXXInvCXIX

Proof

Step Hyp Ref Expression
1 invid.b B=BaseC
2 invid.i I=IdC
3 invid.c φCCat
4 invid.x φXB
5 1 2 3 4 sectid φIXXSectCXIX
6 eqid InvC=InvC
7 eqid SectC=SectC
8 1 6 3 4 4 7 isinv φIXXInvCXIXIXXSectCXIXIXXSectCXIX
9 5 5 8 mpbir2and φIXXInvCXIX