Metamath Proof Explorer


Theorem inxpssidinxp

Description: Two ways to say that intersections with Cartesian products are in a subclass relation, special case of inxpss2 . (Contributed by Peter Mazsa, 4-Jul-2019)

Ref Expression
Assertion inxpssidinxp R A × B I A × B x A y B x R y x = y

Proof

Step Hyp Ref Expression
1 inxpss2 R A × B I A × B x A y B x R y x I y
2 ideqg y V x I y x = y
3 2 elv x I y x = y
4 3 imbi2i x R y x I y x R y x = y
5 4 2ralbii x A y B x R y x I y x A y B x R y x = y
6 1 5 bitri R A × B I A × B x A y B x R y x = y