Metamath Proof Explorer


Theorem iocgtlbd

Description: An element of a left-open right-closed interval is larger than its lower bound. (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypotheses iocgtlbd.1 φ A *
iocgtlbd.2 φ B *
iocgtlbd.3 φ C A B
Assertion iocgtlbd φ A < C

Proof

Step Hyp Ref Expression
1 iocgtlbd.1 φ A *
2 iocgtlbd.2 φ B *
3 iocgtlbd.3 φ C A B
4 iocgtlb A * B * C A B A < C
5 1 2 3 4 syl3anc φ A < C