Metamath Proof Explorer


Theorem iocgtlbd

Description: An element of a left-open right-closed interval is larger than its lower bound. (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypotheses iocgtlbd.1 φA*
iocgtlbd.2 φB*
iocgtlbd.3 φCAB
Assertion iocgtlbd φA<C

Proof

Step Hyp Ref Expression
1 iocgtlbd.1 φA*
2 iocgtlbd.2 φB*
3 iocgtlbd.3 φCAB
4 iocgtlb A*B*CABA<C
5 1 2 3 4 syl3anc φA<C