Metamath Proof Explorer


Theorem iocioodisjd

Description: Adjacent intervals where the lower interval is right-closed and the upper interval is open are disjoint. (Contributed by SN, 1-Oct-2025)

Ref Expression
Hypotheses ixxdisjd.a φ A *
ixxdisjd.b φ B *
ixxdisjd.c φ C *
Assertion iocioodisjd φ A B B C =

Proof

Step Hyp Ref Expression
1 ixxdisjd.a φ A *
2 ixxdisjd.b φ B *
3 ixxdisjd.c φ C *
4 df-ioc . = x * , y * z * | x < z z y
5 df-ioo . = x * , y * z * | x < z z < y
6 xrltnle B * w * B < w ¬ w B
7 4 5 6 ixxdisj A * B * C * A B B C =
8 1 2 3 7 syl3anc φ A B B C =