Step |
Hyp |
Ref |
Expression |
1 |
|
ixxdisjd.a |
|- ( ph -> A e. RR* ) |
2 |
|
ixxdisjd.b |
|- ( ph -> B e. RR* ) |
3 |
|
ixxdisjd.c |
|- ( ph -> C e. RR* ) |
4 |
|
df-ioc |
|- (,] = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x < z /\ z <_ y ) } ) |
5 |
|
df-ioo |
|- (,) = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x < z /\ z < y ) } ) |
6 |
|
xrltnle |
|- ( ( B e. RR* /\ w e. RR* ) -> ( B < w <-> -. w <_ B ) ) |
7 |
4 5 6
|
ixxdisj |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( ( A (,] B ) i^i ( B (,) C ) ) = (/) ) |
8 |
1 2 3 7
|
syl3anc |
|- ( ph -> ( ( A (,] B ) i^i ( B (,) C ) ) = (/) ) |