Metamath Proof Explorer


Theorem iocioodisjd

Description: Adjacent intervals where the lower interval is right-closed and the upper interval is open are disjoint. (Contributed by SN, 1-Oct-2025)

Ref Expression
Hypotheses ixxdisjd.a ( 𝜑𝐴 ∈ ℝ* )
ixxdisjd.b ( 𝜑𝐵 ∈ ℝ* )
ixxdisjd.c ( 𝜑𝐶 ∈ ℝ* )
Assertion iocioodisjd ( 𝜑 → ( ( 𝐴 (,] 𝐵 ) ∩ ( 𝐵 (,) 𝐶 ) ) = ∅ )

Proof

Step Hyp Ref Expression
1 ixxdisjd.a ( 𝜑𝐴 ∈ ℝ* )
2 ixxdisjd.b ( 𝜑𝐵 ∈ ℝ* )
3 ixxdisjd.c ( 𝜑𝐶 ∈ ℝ* )
4 df-ioc (,] = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 < 𝑧𝑧𝑦 ) } )
5 df-ioo (,) = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 < 𝑧𝑧 < 𝑦 ) } )
6 xrltnle ( ( 𝐵 ∈ ℝ*𝑤 ∈ ℝ* ) → ( 𝐵 < 𝑤 ↔ ¬ 𝑤𝐵 ) )
7 4 5 6 ixxdisj ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ* ) → ( ( 𝐴 (,] 𝐵 ) ∩ ( 𝐵 (,) 𝐶 ) ) = ∅ )
8 1 2 3 7 syl3anc ( 𝜑 → ( ( 𝐴 (,] 𝐵 ) ∩ ( 𝐵 (,) 𝐶 ) ) = ∅ )