Description: Adjacent intervals where the lower interval is right-closed and the upper interval is open are disjoint. (Contributed by SN, 1-Oct-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ixxdisjd.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) | |
ixxdisjd.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) | ||
ixxdisjd.c | ⊢ ( 𝜑 → 𝐶 ∈ ℝ* ) | ||
Assertion | iocioodisjd | ⊢ ( 𝜑 → ( ( 𝐴 (,] 𝐵 ) ∩ ( 𝐵 (,) 𝐶 ) ) = ∅ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ixxdisjd.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) | |
2 | ixxdisjd.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) | |
3 | ixxdisjd.c | ⊢ ( 𝜑 → 𝐶 ∈ ℝ* ) | |
4 | df-ioc | ⊢ (,] = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦 ) } ) | |
5 | df-ioo | ⊢ (,) = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 < 𝑧 ∧ 𝑧 < 𝑦 ) } ) | |
6 | xrltnle | ⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ) → ( 𝐵 < 𝑤 ↔ ¬ 𝑤 ≤ 𝐵 ) ) | |
7 | 4 5 6 | ixxdisj | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( ( 𝐴 (,] 𝐵 ) ∩ ( 𝐵 (,) 𝐶 ) ) = ∅ ) |
8 | 1 2 3 7 | syl3anc | ⊢ ( 𝜑 → ( ( 𝐴 (,] 𝐵 ) ∩ ( 𝐵 (,) 𝐶 ) ) = ∅ ) |