Metamath Proof Explorer


Theorem iocssre

Description: A closed-above interval with real upper bound is a set of reals. (Contributed by FL, 29-May-2014)

Ref Expression
Assertion iocssre A*BAB

Proof

Step Hyp Ref Expression
1 elioc2 A*BxABxA<xxB
2 1 biimp3a A*BxABxA<xxB
3 2 simp1d A*BxABx
4 3 3expia A*BxABx
5 4 ssrdv A*BAB