Metamath Proof Explorer


Theorem iooin

Description: Intersection of two open intervals of extended reals. (Contributed by NM, 7-Feb-2007) (Revised by Mario Carneiro, 3-Nov-2013)

Ref Expression
Assertion iooin A*B*C*D*ABCD=ifACCAifBDBD

Proof

Step Hyp Ref Expression
1 df-ioo .=x*,y*z*|x<zz<y
2 xrmaxlt A*C*z*ifACCA<zA<zC<z
3 xrltmin z*B*D*z<ifBDBDz<Bz<D
4 1 2 3 ixxin A*B*C*D*ABCD=ifACCAifBDBD