Metamath Proof Explorer


Theorem iota0ndef

Description: Example for an undefined iota being the empty set, i.e., A. y y e. x is a wff not satisfied by a (unique) value x (there is no set, and therefore certainly no unique set, which contains every set). (Contributed by AV, 24-Aug-2022)

Ref Expression
Assertion iota0ndef ι x | y y x =

Proof

Step Hyp Ref Expression
1 nalset ¬ x y y x
2 1 intnanr ¬ x y y x * x y y x
3 df-eu ∃! x y y x x y y x * x y y x
4 2 3 mtbir ¬ ∃! x y y x
5 iotanul ¬ ∃! x y y x ι x | y y x =
6 4 5 ax-mp ι x | y y x =