Metamath Proof Explorer


Theorem ip1i

Description: Equation 6.47 of Ponnusamy p. 362. (Contributed by NM, 27-Apr-2007) (New usage is discouraged.)

Ref Expression
Hypotheses ip1i.1 X=BaseSetU
ip1i.2 G=+vU
ip1i.4 S=𝑠OLDU
ip1i.7 P=𝑖OLDU
ip1i.9 UCPreHilOLD
ip1i.a AX
ip1i.b BX
ip1i.c CX
Assertion ip1i AGBPC+AG-1SBPC=2APC

Proof

Step Hyp Ref Expression
1 ip1i.1 X=BaseSetU
2 ip1i.2 G=+vU
3 ip1i.4 S=𝑠OLDU
4 ip1i.7 P=𝑖OLDU
5 ip1i.9 UCPreHilOLD
6 ip1i.a AX
7 ip1i.b BX
8 ip1i.c CX
9 eqid normCVU=normCVU
10 ax-1cn 1
11 1 2 3 4 5 6 7 8 9 10 ip1ilem AGBPC+AG-1SBPC=2APC