Metamath Proof Explorer


Theorem ip2i

Description: Equation 6.48 of Ponnusamy p. 362. (Contributed by NM, 26-Apr-2007) (New usage is discouraged.)

Ref Expression
Hypotheses ip1i.1 X=BaseSetU
ip1i.2 G=+vU
ip1i.4 S=𝑠OLDU
ip1i.7 P=𝑖OLDU
ip1i.9 UCPreHilOLD
ip2i.8 AX
ip2i.9 BX
Assertion ip2i 2SAPB=2APB

Proof

Step Hyp Ref Expression
1 ip1i.1 X=BaseSetU
2 ip1i.2 G=+vU
3 ip1i.4 S=𝑠OLDU
4 ip1i.7 P=𝑖OLDU
5 ip1i.9 UCPreHilOLD
6 ip2i.8 AX
7 ip2i.9 BX
8 5 phnvi UNrmCVec
9 1 2 nvgcl UNrmCVecAXAXAGAX
10 8 6 6 9 mp3an AGAX
11 1 4 dipcl UNrmCVecAGAXBXAGAPB
12 8 10 7 11 mp3an AGAPB
13 12 addridi AGAPB+0=AGAPB
14 eqid 0vecU=0vecU
15 1 2 3 14 nvrinv UNrmCVecAXAG-1SA=0vecU
16 8 6 15 mp2an AG-1SA=0vecU
17 16 oveq1i AG-1SAPB=0vecUPB
18 1 14 4 dip0l UNrmCVecBX0vecUPB=0
19 8 7 18 mp2an 0vecUPB=0
20 17 19 eqtri AG-1SAPB=0
21 20 oveq2i AGAPB+AG-1SAPB=AGAPB+0
22 df-2 2=1+1
23 22 oveq1i 2SA=1+1SA
24 ax-1cn 1
25 24 24 6 3pm3.2i 11AX
26 1 2 3 nvdir UNrmCVec11AX1+1SA=1SAG1SA
27 8 25 26 mp2an 1+1SA=1SAG1SA
28 1 3 nvsid UNrmCVecAX1SA=A
29 8 6 28 mp2an 1SA=A
30 29 29 oveq12i 1SAG1SA=AGA
31 27 30 eqtri 1+1SA=AGA
32 23 31 eqtri 2SA=AGA
33 32 oveq1i 2SAPB=AGAPB
34 13 21 33 3eqtr4ri 2SAPB=AGAPB+AG-1SAPB
35 1 2 3 4 5 6 6 7 ip1i AGAPB+AG-1SAPB=2APB
36 34 35 eqtri 2SAPB=2APB