Metamath Proof Explorer


Theorem ipdirilem

Description: Lemma for ipdiri . (Contributed by NM, 26-Apr-2007) (New usage is discouraged.)

Ref Expression
Hypotheses ip1i.1 X=BaseSetU
ip1i.2 G=+vU
ip1i.4 S=𝑠OLDU
ip1i.7 P=𝑖OLDU
ip1i.9 UCPreHilOLD
ipdiri.8 AX
ipdiri.9 BX
ipdiri.10 CX
Assertion ipdirilem AGBPC=APC+BPC

Proof

Step Hyp Ref Expression
1 ip1i.1 X=BaseSetU
2 ip1i.2 G=+vU
3 ip1i.4 S=𝑠OLDU
4 ip1i.7 P=𝑖OLDU
5 ip1i.9 UCPreHilOLD
6 ipdiri.8 AX
7 ipdiri.9 BX
8 ipdiri.10 CX
9 2cn 2
10 2ne0 20
11 9 10 recidi 212=1
12 11 oveq1i 212SAGB=1SAGB
13 5 phnvi UNrmCVec
14 halfcn 12
15 1 2 nvgcl UNrmCVecAXBXAGBX
16 13 6 7 15 mp3an AGBX
17 9 14 16 3pm3.2i 212AGBX
18 1 3 nvsass UNrmCVec212AGBX212SAGB=2S12SAGB
19 13 17 18 mp2an 212SAGB=2S12SAGB
20 1 3 nvsid UNrmCVecAGBX1SAGB=AGB
21 13 16 20 mp2an 1SAGB=AGB
22 12 19 21 3eqtr3i 2S12SAGB=AGB
23 22 oveq1i 2S12SAGBPC=AGBPC
24 1 3 nvscl UNrmCVec12AGBX12SAGBX
25 13 14 16 24 mp3an 12SAGBX
26 1 2 3 4 5 25 8 ip2i 2S12SAGBPC=212SAGBPC
27 23 26 eqtr3i AGBPC=212SAGBPC
28 neg1cn 1
29 1 3 nvscl UNrmCVec1BX-1SBX
30 13 28 7 29 mp3an -1SBX
31 1 2 nvgcl UNrmCVecAX-1SBXAG-1SBX
32 13 6 30 31 mp3an AG-1SBX
33 1 3 nvscl UNrmCVec12AG-1SBX12SAG-1SBX
34 13 14 32 33 mp3an 12SAG-1SBX
35 1 2 3 4 5 25 34 8 ip1i 12SAGBG12SAG-1SBPC+12SAGBG-1S12SAG-1SBPC=212SAGBPC
36 eqid 1stU=1stU
37 36 nvvc UNrmCVec1stUCVecOLD
38 13 37 ax-mp 1stUCVecOLD
39 2 vafval G=1st1stU
40 39 vcablo 1stUCVecOLDGAbelOp
41 38 40 ax-mp GAbelOp
42 6 7 pm3.2i AXBX
43 6 30 pm3.2i AX-1SBX
44 1 2 bafval X=ranG
45 44 ablo4 GAbelOpAXBXAX-1SBXAGBGAG-1SB=AGAGBG-1SB
46 41 42 43 45 mp3an AGBGAG-1SB=AGAGBG-1SB
47 3 smfval S=2nd1stU
48 39 47 44 vc2OLD 1stUCVecOLDAXAGA=2SA
49 38 6 48 mp2an AGA=2SA
50 eqid 0vecU=0vecU
51 1 2 3 50 nvrinv UNrmCVecBXBG-1SB=0vecU
52 13 7 51 mp2an BG-1SB=0vecU
53 49 52 oveq12i AGAGBG-1SB=2SAG0vecU
54 1 3 nvscl UNrmCVec2AX2SAX
55 13 9 6 54 mp3an 2SAX
56 1 2 50 nv0rid UNrmCVec2SAX2SAG0vecU=2SA
57 13 55 56 mp2an 2SAG0vecU=2SA
58 46 53 57 3eqtri AGBGAG-1SB=2SA
59 58 oveq2i 12SAGBGAG-1SB=12S2SA
60 14 9 6 3pm3.2i 122AX
61 1 3 nvsass UNrmCVec122AX122SA=12S2SA
62 13 60 61 mp2an 122SA=12S2SA
63 59 62 eqtr4i 12SAGBGAG-1SB=122SA
64 14 16 32 3pm3.2i 12AGBXAG-1SBX
65 1 2 3 nvdi UNrmCVec12AGBXAG-1SBX12SAGBGAG-1SB=12SAGBG12SAG-1SB
66 13 64 65 mp2an 12SAGBGAG-1SB=12SAGBG12SAG-1SB
67 ax-1cn 1
68 67 9 10 divcan1i 122=1
69 68 oveq1i 122SA=1SA
70 1 3 nvsid UNrmCVecAX1SA=A
71 13 6 70 mp2an 1SA=A
72 69 71 eqtri 122SA=A
73 63 66 72 3eqtr3i 12SAGBG12SAG-1SB=A
74 73 oveq1i 12SAGBG12SAG-1SBPC=APC
75 28 14 mulcomi -112=12-1
76 75 oveq1i -112SAG-1SB=12-1SAG-1SB
77 28 14 32 3pm3.2i 112AG-1SBX
78 1 3 nvsass UNrmCVec112AG-1SBX-112SAG-1SB=-1S12SAG-1SB
79 13 77 78 mp2an -112SAG-1SB=-1S12SAG-1SB
80 14 28 32 3pm3.2i 121AG-1SBX
81 1 3 nvsass UNrmCVec121AG-1SBX12-1SAG-1SB=12S-1SAG-1SB
82 13 80 81 mp2an 12-1SAG-1SB=12S-1SAG-1SB
83 28 6 30 3pm3.2i 1AX-1SBX
84 1 2 3 nvdi UNrmCVec1AX-1SBX-1SAG-1SB=-1SAG-1S-1SB
85 13 83 84 mp2an -1SAG-1SB=-1SAG-1S-1SB
86 neg1mulneg1e1 -1-1=1
87 86 oveq1i -1-1SB=1SB
88 28 28 7 3pm3.2i 11BX
89 1 3 nvsass UNrmCVec11BX-1-1SB=-1S-1SB
90 13 88 89 mp2an -1-1SB=-1S-1SB
91 1 3 nvsid UNrmCVecBX1SB=B
92 13 7 91 mp2an 1SB=B
93 87 90 92 3eqtr3i -1S-1SB=B
94 93 oveq2i -1SAG-1S-1SB=-1SAGB
95 85 94 eqtri -1SAG-1SB=-1SAGB
96 95 oveq2i 12S-1SAG-1SB=12S-1SAGB
97 82 96 eqtri 12-1SAG-1SB=12S-1SAGB
98 76 79 97 3eqtr3i -1S12SAG-1SB=12S-1SAGB
99 98 oveq2i 12SAGBG-1S12SAG-1SB=12SAGBG12S-1SAGB
100 1 3 nvscl UNrmCVec1AX-1SAX
101 13 28 6 100 mp3an -1SAX
102 1 2 nvgcl UNrmCVec-1SAXBX-1SAGBX
103 13 101 7 102 mp3an -1SAGBX
104 14 16 103 3pm3.2i 12AGBX-1SAGBX
105 1 2 3 nvdi UNrmCVec12AGBX-1SAGBX12SAGBG-1SAGB=12SAGBG12S-1SAGB
106 13 104 105 mp2an 12SAGBG-1SAGB=12SAGBG12S-1SAGB
107 99 106 eqtr4i 12SAGBG-1S12SAG-1SB=12SAGBG-1SAGB
108 101 7 pm3.2i -1SAXBX
109 44 ablo4 GAbelOpAXBX-1SAXBXAGBG-1SAGB=AG-1SAGBGB
110 41 42 108 109 mp3an AGBG-1SAGB=AG-1SAGBGB
111 1 2 3 50 nvrinv UNrmCVecAXAG-1SA=0vecU
112 13 6 111 mp2an AG-1SA=0vecU
113 112 oveq1i AG-1SAGBGB=0vecUGBGB
114 1 2 nvgcl UNrmCVecBXBXBGBX
115 13 7 7 114 mp3an BGBX
116 1 2 50 nv0lid UNrmCVecBGBX0vecUGBGB=BGB
117 13 115 116 mp2an 0vecUGBGB=BGB
118 113 117 eqtri AG-1SAGBGB=BGB
119 39 47 44 vc2OLD 1stUCVecOLDBXBGB=2SB
120 38 7 119 mp2an BGB=2SB
121 110 118 120 3eqtri AGBG-1SAGB=2SB
122 121 oveq2i 12SAGBG-1SAGB=12S2SB
123 14 9 7 3pm3.2i 122BX
124 1 3 nvsass UNrmCVec122BX122SB=12S2SB
125 13 123 124 mp2an 122SB=12S2SB
126 68 oveq1i 122SB=1SB
127 122 125 126 3eqtr2i 12SAGBG-1SAGB=1SB
128 107 127 92 3eqtri 12SAGBG-1S12SAG-1SB=B
129 128 oveq1i 12SAGBG-1S12SAG-1SBPC=BPC
130 74 129 oveq12i 12SAGBG12SAG-1SBPC+12SAGBG-1S12SAG-1SBPC=APC+BPC
131 27 35 130 3eqtr2i AGBPC=APC+BPC