| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ip1i.1 |
|- X = ( BaseSet ` U ) |
| 2 |
|
ip1i.2 |
|- G = ( +v ` U ) |
| 3 |
|
ip1i.4 |
|- S = ( .sOLD ` U ) |
| 4 |
|
ip1i.7 |
|- P = ( .iOLD ` U ) |
| 5 |
|
ip1i.9 |
|- U e. CPreHilOLD |
| 6 |
|
ipdiri.8 |
|- A e. X |
| 7 |
|
ipdiri.9 |
|- B e. X |
| 8 |
|
ipdiri.10 |
|- C e. X |
| 9 |
|
2cn |
|- 2 e. CC |
| 10 |
|
2ne0 |
|- 2 =/= 0 |
| 11 |
9 10
|
recidi |
|- ( 2 x. ( 1 / 2 ) ) = 1 |
| 12 |
11
|
oveq1i |
|- ( ( 2 x. ( 1 / 2 ) ) S ( A G B ) ) = ( 1 S ( A G B ) ) |
| 13 |
5
|
phnvi |
|- U e. NrmCVec |
| 14 |
|
halfcn |
|- ( 1 / 2 ) e. CC |
| 15 |
1 2
|
nvgcl |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A G B ) e. X ) |
| 16 |
13 6 7 15
|
mp3an |
|- ( A G B ) e. X |
| 17 |
9 14 16
|
3pm3.2i |
|- ( 2 e. CC /\ ( 1 / 2 ) e. CC /\ ( A G B ) e. X ) |
| 18 |
1 3
|
nvsass |
|- ( ( U e. NrmCVec /\ ( 2 e. CC /\ ( 1 / 2 ) e. CC /\ ( A G B ) e. X ) ) -> ( ( 2 x. ( 1 / 2 ) ) S ( A G B ) ) = ( 2 S ( ( 1 / 2 ) S ( A G B ) ) ) ) |
| 19 |
13 17 18
|
mp2an |
|- ( ( 2 x. ( 1 / 2 ) ) S ( A G B ) ) = ( 2 S ( ( 1 / 2 ) S ( A G B ) ) ) |
| 20 |
1 3
|
nvsid |
|- ( ( U e. NrmCVec /\ ( A G B ) e. X ) -> ( 1 S ( A G B ) ) = ( A G B ) ) |
| 21 |
13 16 20
|
mp2an |
|- ( 1 S ( A G B ) ) = ( A G B ) |
| 22 |
12 19 21
|
3eqtr3i |
|- ( 2 S ( ( 1 / 2 ) S ( A G B ) ) ) = ( A G B ) |
| 23 |
22
|
oveq1i |
|- ( ( 2 S ( ( 1 / 2 ) S ( A G B ) ) ) P C ) = ( ( A G B ) P C ) |
| 24 |
1 3
|
nvscl |
|- ( ( U e. NrmCVec /\ ( 1 / 2 ) e. CC /\ ( A G B ) e. X ) -> ( ( 1 / 2 ) S ( A G B ) ) e. X ) |
| 25 |
13 14 16 24
|
mp3an |
|- ( ( 1 / 2 ) S ( A G B ) ) e. X |
| 26 |
1 2 3 4 5 25 8
|
ip2i |
|- ( ( 2 S ( ( 1 / 2 ) S ( A G B ) ) ) P C ) = ( 2 x. ( ( ( 1 / 2 ) S ( A G B ) ) P C ) ) |
| 27 |
23 26
|
eqtr3i |
|- ( ( A G B ) P C ) = ( 2 x. ( ( ( 1 / 2 ) S ( A G B ) ) P C ) ) |
| 28 |
|
neg1cn |
|- -u 1 e. CC |
| 29 |
1 3
|
nvscl |
|- ( ( U e. NrmCVec /\ -u 1 e. CC /\ B e. X ) -> ( -u 1 S B ) e. X ) |
| 30 |
13 28 7 29
|
mp3an |
|- ( -u 1 S B ) e. X |
| 31 |
1 2
|
nvgcl |
|- ( ( U e. NrmCVec /\ A e. X /\ ( -u 1 S B ) e. X ) -> ( A G ( -u 1 S B ) ) e. X ) |
| 32 |
13 6 30 31
|
mp3an |
|- ( A G ( -u 1 S B ) ) e. X |
| 33 |
1 3
|
nvscl |
|- ( ( U e. NrmCVec /\ ( 1 / 2 ) e. CC /\ ( A G ( -u 1 S B ) ) e. X ) -> ( ( 1 / 2 ) S ( A G ( -u 1 S B ) ) ) e. X ) |
| 34 |
13 14 32 33
|
mp3an |
|- ( ( 1 / 2 ) S ( A G ( -u 1 S B ) ) ) e. X |
| 35 |
1 2 3 4 5 25 34 8
|
ip1i |
|- ( ( ( ( ( 1 / 2 ) S ( A G B ) ) G ( ( 1 / 2 ) S ( A G ( -u 1 S B ) ) ) ) P C ) + ( ( ( ( 1 / 2 ) S ( A G B ) ) G ( -u 1 S ( ( 1 / 2 ) S ( A G ( -u 1 S B ) ) ) ) ) P C ) ) = ( 2 x. ( ( ( 1 / 2 ) S ( A G B ) ) P C ) ) |
| 36 |
|
eqid |
|- ( 1st ` U ) = ( 1st ` U ) |
| 37 |
36
|
nvvc |
|- ( U e. NrmCVec -> ( 1st ` U ) e. CVecOLD ) |
| 38 |
13 37
|
ax-mp |
|- ( 1st ` U ) e. CVecOLD |
| 39 |
2
|
vafval |
|- G = ( 1st ` ( 1st ` U ) ) |
| 40 |
39
|
vcablo |
|- ( ( 1st ` U ) e. CVecOLD -> G e. AbelOp ) |
| 41 |
38 40
|
ax-mp |
|- G e. AbelOp |
| 42 |
6 7
|
pm3.2i |
|- ( A e. X /\ B e. X ) |
| 43 |
6 30
|
pm3.2i |
|- ( A e. X /\ ( -u 1 S B ) e. X ) |
| 44 |
1 2
|
bafval |
|- X = ran G |
| 45 |
44
|
ablo4 |
|- ( ( G e. AbelOp /\ ( A e. X /\ B e. X ) /\ ( A e. X /\ ( -u 1 S B ) e. X ) ) -> ( ( A G B ) G ( A G ( -u 1 S B ) ) ) = ( ( A G A ) G ( B G ( -u 1 S B ) ) ) ) |
| 46 |
41 42 43 45
|
mp3an |
|- ( ( A G B ) G ( A G ( -u 1 S B ) ) ) = ( ( A G A ) G ( B G ( -u 1 S B ) ) ) |
| 47 |
3
|
smfval |
|- S = ( 2nd ` ( 1st ` U ) ) |
| 48 |
39 47 44
|
vc2OLD |
|- ( ( ( 1st ` U ) e. CVecOLD /\ A e. X ) -> ( A G A ) = ( 2 S A ) ) |
| 49 |
38 6 48
|
mp2an |
|- ( A G A ) = ( 2 S A ) |
| 50 |
|
eqid |
|- ( 0vec ` U ) = ( 0vec ` U ) |
| 51 |
1 2 3 50
|
nvrinv |
|- ( ( U e. NrmCVec /\ B e. X ) -> ( B G ( -u 1 S B ) ) = ( 0vec ` U ) ) |
| 52 |
13 7 51
|
mp2an |
|- ( B G ( -u 1 S B ) ) = ( 0vec ` U ) |
| 53 |
49 52
|
oveq12i |
|- ( ( A G A ) G ( B G ( -u 1 S B ) ) ) = ( ( 2 S A ) G ( 0vec ` U ) ) |
| 54 |
1 3
|
nvscl |
|- ( ( U e. NrmCVec /\ 2 e. CC /\ A e. X ) -> ( 2 S A ) e. X ) |
| 55 |
13 9 6 54
|
mp3an |
|- ( 2 S A ) e. X |
| 56 |
1 2 50
|
nv0rid |
|- ( ( U e. NrmCVec /\ ( 2 S A ) e. X ) -> ( ( 2 S A ) G ( 0vec ` U ) ) = ( 2 S A ) ) |
| 57 |
13 55 56
|
mp2an |
|- ( ( 2 S A ) G ( 0vec ` U ) ) = ( 2 S A ) |
| 58 |
46 53 57
|
3eqtri |
|- ( ( A G B ) G ( A G ( -u 1 S B ) ) ) = ( 2 S A ) |
| 59 |
58
|
oveq2i |
|- ( ( 1 / 2 ) S ( ( A G B ) G ( A G ( -u 1 S B ) ) ) ) = ( ( 1 / 2 ) S ( 2 S A ) ) |
| 60 |
14 9 6
|
3pm3.2i |
|- ( ( 1 / 2 ) e. CC /\ 2 e. CC /\ A e. X ) |
| 61 |
1 3
|
nvsass |
|- ( ( U e. NrmCVec /\ ( ( 1 / 2 ) e. CC /\ 2 e. CC /\ A e. X ) ) -> ( ( ( 1 / 2 ) x. 2 ) S A ) = ( ( 1 / 2 ) S ( 2 S A ) ) ) |
| 62 |
13 60 61
|
mp2an |
|- ( ( ( 1 / 2 ) x. 2 ) S A ) = ( ( 1 / 2 ) S ( 2 S A ) ) |
| 63 |
59 62
|
eqtr4i |
|- ( ( 1 / 2 ) S ( ( A G B ) G ( A G ( -u 1 S B ) ) ) ) = ( ( ( 1 / 2 ) x. 2 ) S A ) |
| 64 |
14 16 32
|
3pm3.2i |
|- ( ( 1 / 2 ) e. CC /\ ( A G B ) e. X /\ ( A G ( -u 1 S B ) ) e. X ) |
| 65 |
1 2 3
|
nvdi |
|- ( ( U e. NrmCVec /\ ( ( 1 / 2 ) e. CC /\ ( A G B ) e. X /\ ( A G ( -u 1 S B ) ) e. X ) ) -> ( ( 1 / 2 ) S ( ( A G B ) G ( A G ( -u 1 S B ) ) ) ) = ( ( ( 1 / 2 ) S ( A G B ) ) G ( ( 1 / 2 ) S ( A G ( -u 1 S B ) ) ) ) ) |
| 66 |
13 64 65
|
mp2an |
|- ( ( 1 / 2 ) S ( ( A G B ) G ( A G ( -u 1 S B ) ) ) ) = ( ( ( 1 / 2 ) S ( A G B ) ) G ( ( 1 / 2 ) S ( A G ( -u 1 S B ) ) ) ) |
| 67 |
|
ax-1cn |
|- 1 e. CC |
| 68 |
67 9 10
|
divcan1i |
|- ( ( 1 / 2 ) x. 2 ) = 1 |
| 69 |
68
|
oveq1i |
|- ( ( ( 1 / 2 ) x. 2 ) S A ) = ( 1 S A ) |
| 70 |
1 3
|
nvsid |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( 1 S A ) = A ) |
| 71 |
13 6 70
|
mp2an |
|- ( 1 S A ) = A |
| 72 |
69 71
|
eqtri |
|- ( ( ( 1 / 2 ) x. 2 ) S A ) = A |
| 73 |
63 66 72
|
3eqtr3i |
|- ( ( ( 1 / 2 ) S ( A G B ) ) G ( ( 1 / 2 ) S ( A G ( -u 1 S B ) ) ) ) = A |
| 74 |
73
|
oveq1i |
|- ( ( ( ( 1 / 2 ) S ( A G B ) ) G ( ( 1 / 2 ) S ( A G ( -u 1 S B ) ) ) ) P C ) = ( A P C ) |
| 75 |
28 14
|
mulcomi |
|- ( -u 1 x. ( 1 / 2 ) ) = ( ( 1 / 2 ) x. -u 1 ) |
| 76 |
75
|
oveq1i |
|- ( ( -u 1 x. ( 1 / 2 ) ) S ( A G ( -u 1 S B ) ) ) = ( ( ( 1 / 2 ) x. -u 1 ) S ( A G ( -u 1 S B ) ) ) |
| 77 |
28 14 32
|
3pm3.2i |
|- ( -u 1 e. CC /\ ( 1 / 2 ) e. CC /\ ( A G ( -u 1 S B ) ) e. X ) |
| 78 |
1 3
|
nvsass |
|- ( ( U e. NrmCVec /\ ( -u 1 e. CC /\ ( 1 / 2 ) e. CC /\ ( A G ( -u 1 S B ) ) e. X ) ) -> ( ( -u 1 x. ( 1 / 2 ) ) S ( A G ( -u 1 S B ) ) ) = ( -u 1 S ( ( 1 / 2 ) S ( A G ( -u 1 S B ) ) ) ) ) |
| 79 |
13 77 78
|
mp2an |
|- ( ( -u 1 x. ( 1 / 2 ) ) S ( A G ( -u 1 S B ) ) ) = ( -u 1 S ( ( 1 / 2 ) S ( A G ( -u 1 S B ) ) ) ) |
| 80 |
14 28 32
|
3pm3.2i |
|- ( ( 1 / 2 ) e. CC /\ -u 1 e. CC /\ ( A G ( -u 1 S B ) ) e. X ) |
| 81 |
1 3
|
nvsass |
|- ( ( U e. NrmCVec /\ ( ( 1 / 2 ) e. CC /\ -u 1 e. CC /\ ( A G ( -u 1 S B ) ) e. X ) ) -> ( ( ( 1 / 2 ) x. -u 1 ) S ( A G ( -u 1 S B ) ) ) = ( ( 1 / 2 ) S ( -u 1 S ( A G ( -u 1 S B ) ) ) ) ) |
| 82 |
13 80 81
|
mp2an |
|- ( ( ( 1 / 2 ) x. -u 1 ) S ( A G ( -u 1 S B ) ) ) = ( ( 1 / 2 ) S ( -u 1 S ( A G ( -u 1 S B ) ) ) ) |
| 83 |
28 6 30
|
3pm3.2i |
|- ( -u 1 e. CC /\ A e. X /\ ( -u 1 S B ) e. X ) |
| 84 |
1 2 3
|
nvdi |
|- ( ( U e. NrmCVec /\ ( -u 1 e. CC /\ A e. X /\ ( -u 1 S B ) e. X ) ) -> ( -u 1 S ( A G ( -u 1 S B ) ) ) = ( ( -u 1 S A ) G ( -u 1 S ( -u 1 S B ) ) ) ) |
| 85 |
13 83 84
|
mp2an |
|- ( -u 1 S ( A G ( -u 1 S B ) ) ) = ( ( -u 1 S A ) G ( -u 1 S ( -u 1 S B ) ) ) |
| 86 |
|
neg1mulneg1e1 |
|- ( -u 1 x. -u 1 ) = 1 |
| 87 |
86
|
oveq1i |
|- ( ( -u 1 x. -u 1 ) S B ) = ( 1 S B ) |
| 88 |
28 28 7
|
3pm3.2i |
|- ( -u 1 e. CC /\ -u 1 e. CC /\ B e. X ) |
| 89 |
1 3
|
nvsass |
|- ( ( U e. NrmCVec /\ ( -u 1 e. CC /\ -u 1 e. CC /\ B e. X ) ) -> ( ( -u 1 x. -u 1 ) S B ) = ( -u 1 S ( -u 1 S B ) ) ) |
| 90 |
13 88 89
|
mp2an |
|- ( ( -u 1 x. -u 1 ) S B ) = ( -u 1 S ( -u 1 S B ) ) |
| 91 |
1 3
|
nvsid |
|- ( ( U e. NrmCVec /\ B e. X ) -> ( 1 S B ) = B ) |
| 92 |
13 7 91
|
mp2an |
|- ( 1 S B ) = B |
| 93 |
87 90 92
|
3eqtr3i |
|- ( -u 1 S ( -u 1 S B ) ) = B |
| 94 |
93
|
oveq2i |
|- ( ( -u 1 S A ) G ( -u 1 S ( -u 1 S B ) ) ) = ( ( -u 1 S A ) G B ) |
| 95 |
85 94
|
eqtri |
|- ( -u 1 S ( A G ( -u 1 S B ) ) ) = ( ( -u 1 S A ) G B ) |
| 96 |
95
|
oveq2i |
|- ( ( 1 / 2 ) S ( -u 1 S ( A G ( -u 1 S B ) ) ) ) = ( ( 1 / 2 ) S ( ( -u 1 S A ) G B ) ) |
| 97 |
82 96
|
eqtri |
|- ( ( ( 1 / 2 ) x. -u 1 ) S ( A G ( -u 1 S B ) ) ) = ( ( 1 / 2 ) S ( ( -u 1 S A ) G B ) ) |
| 98 |
76 79 97
|
3eqtr3i |
|- ( -u 1 S ( ( 1 / 2 ) S ( A G ( -u 1 S B ) ) ) ) = ( ( 1 / 2 ) S ( ( -u 1 S A ) G B ) ) |
| 99 |
98
|
oveq2i |
|- ( ( ( 1 / 2 ) S ( A G B ) ) G ( -u 1 S ( ( 1 / 2 ) S ( A G ( -u 1 S B ) ) ) ) ) = ( ( ( 1 / 2 ) S ( A G B ) ) G ( ( 1 / 2 ) S ( ( -u 1 S A ) G B ) ) ) |
| 100 |
1 3
|
nvscl |
|- ( ( U e. NrmCVec /\ -u 1 e. CC /\ A e. X ) -> ( -u 1 S A ) e. X ) |
| 101 |
13 28 6 100
|
mp3an |
|- ( -u 1 S A ) e. X |
| 102 |
1 2
|
nvgcl |
|- ( ( U e. NrmCVec /\ ( -u 1 S A ) e. X /\ B e. X ) -> ( ( -u 1 S A ) G B ) e. X ) |
| 103 |
13 101 7 102
|
mp3an |
|- ( ( -u 1 S A ) G B ) e. X |
| 104 |
14 16 103
|
3pm3.2i |
|- ( ( 1 / 2 ) e. CC /\ ( A G B ) e. X /\ ( ( -u 1 S A ) G B ) e. X ) |
| 105 |
1 2 3
|
nvdi |
|- ( ( U e. NrmCVec /\ ( ( 1 / 2 ) e. CC /\ ( A G B ) e. X /\ ( ( -u 1 S A ) G B ) e. X ) ) -> ( ( 1 / 2 ) S ( ( A G B ) G ( ( -u 1 S A ) G B ) ) ) = ( ( ( 1 / 2 ) S ( A G B ) ) G ( ( 1 / 2 ) S ( ( -u 1 S A ) G B ) ) ) ) |
| 106 |
13 104 105
|
mp2an |
|- ( ( 1 / 2 ) S ( ( A G B ) G ( ( -u 1 S A ) G B ) ) ) = ( ( ( 1 / 2 ) S ( A G B ) ) G ( ( 1 / 2 ) S ( ( -u 1 S A ) G B ) ) ) |
| 107 |
99 106
|
eqtr4i |
|- ( ( ( 1 / 2 ) S ( A G B ) ) G ( -u 1 S ( ( 1 / 2 ) S ( A G ( -u 1 S B ) ) ) ) ) = ( ( 1 / 2 ) S ( ( A G B ) G ( ( -u 1 S A ) G B ) ) ) |
| 108 |
101 7
|
pm3.2i |
|- ( ( -u 1 S A ) e. X /\ B e. X ) |
| 109 |
44
|
ablo4 |
|- ( ( G e. AbelOp /\ ( A e. X /\ B e. X ) /\ ( ( -u 1 S A ) e. X /\ B e. X ) ) -> ( ( A G B ) G ( ( -u 1 S A ) G B ) ) = ( ( A G ( -u 1 S A ) ) G ( B G B ) ) ) |
| 110 |
41 42 108 109
|
mp3an |
|- ( ( A G B ) G ( ( -u 1 S A ) G B ) ) = ( ( A G ( -u 1 S A ) ) G ( B G B ) ) |
| 111 |
1 2 3 50
|
nvrinv |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( A G ( -u 1 S A ) ) = ( 0vec ` U ) ) |
| 112 |
13 6 111
|
mp2an |
|- ( A G ( -u 1 S A ) ) = ( 0vec ` U ) |
| 113 |
112
|
oveq1i |
|- ( ( A G ( -u 1 S A ) ) G ( B G B ) ) = ( ( 0vec ` U ) G ( B G B ) ) |
| 114 |
1 2
|
nvgcl |
|- ( ( U e. NrmCVec /\ B e. X /\ B e. X ) -> ( B G B ) e. X ) |
| 115 |
13 7 7 114
|
mp3an |
|- ( B G B ) e. X |
| 116 |
1 2 50
|
nv0lid |
|- ( ( U e. NrmCVec /\ ( B G B ) e. X ) -> ( ( 0vec ` U ) G ( B G B ) ) = ( B G B ) ) |
| 117 |
13 115 116
|
mp2an |
|- ( ( 0vec ` U ) G ( B G B ) ) = ( B G B ) |
| 118 |
113 117
|
eqtri |
|- ( ( A G ( -u 1 S A ) ) G ( B G B ) ) = ( B G B ) |
| 119 |
39 47 44
|
vc2OLD |
|- ( ( ( 1st ` U ) e. CVecOLD /\ B e. X ) -> ( B G B ) = ( 2 S B ) ) |
| 120 |
38 7 119
|
mp2an |
|- ( B G B ) = ( 2 S B ) |
| 121 |
110 118 120
|
3eqtri |
|- ( ( A G B ) G ( ( -u 1 S A ) G B ) ) = ( 2 S B ) |
| 122 |
121
|
oveq2i |
|- ( ( 1 / 2 ) S ( ( A G B ) G ( ( -u 1 S A ) G B ) ) ) = ( ( 1 / 2 ) S ( 2 S B ) ) |
| 123 |
14 9 7
|
3pm3.2i |
|- ( ( 1 / 2 ) e. CC /\ 2 e. CC /\ B e. X ) |
| 124 |
1 3
|
nvsass |
|- ( ( U e. NrmCVec /\ ( ( 1 / 2 ) e. CC /\ 2 e. CC /\ B e. X ) ) -> ( ( ( 1 / 2 ) x. 2 ) S B ) = ( ( 1 / 2 ) S ( 2 S B ) ) ) |
| 125 |
13 123 124
|
mp2an |
|- ( ( ( 1 / 2 ) x. 2 ) S B ) = ( ( 1 / 2 ) S ( 2 S B ) ) |
| 126 |
68
|
oveq1i |
|- ( ( ( 1 / 2 ) x. 2 ) S B ) = ( 1 S B ) |
| 127 |
122 125 126
|
3eqtr2i |
|- ( ( 1 / 2 ) S ( ( A G B ) G ( ( -u 1 S A ) G B ) ) ) = ( 1 S B ) |
| 128 |
107 127 92
|
3eqtri |
|- ( ( ( 1 / 2 ) S ( A G B ) ) G ( -u 1 S ( ( 1 / 2 ) S ( A G ( -u 1 S B ) ) ) ) ) = B |
| 129 |
128
|
oveq1i |
|- ( ( ( ( 1 / 2 ) S ( A G B ) ) G ( -u 1 S ( ( 1 / 2 ) S ( A G ( -u 1 S B ) ) ) ) ) P C ) = ( B P C ) |
| 130 |
74 129
|
oveq12i |
|- ( ( ( ( ( 1 / 2 ) S ( A G B ) ) G ( ( 1 / 2 ) S ( A G ( -u 1 S B ) ) ) ) P C ) + ( ( ( ( 1 / 2 ) S ( A G B ) ) G ( -u 1 S ( ( 1 / 2 ) S ( A G ( -u 1 S B ) ) ) ) ) P C ) ) = ( ( A P C ) + ( B P C ) ) |
| 131 |
27 35 130
|
3eqtr2i |
|- ( ( A G B ) P C ) = ( ( A P C ) + ( B P C ) ) |