| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ip1i.1 |  |-  X = ( BaseSet ` U ) | 
						
							| 2 |  | ip1i.2 |  |-  G = ( +v ` U ) | 
						
							| 3 |  | ip1i.4 |  |-  S = ( .sOLD ` U ) | 
						
							| 4 |  | ip1i.7 |  |-  P = ( .iOLD ` U ) | 
						
							| 5 |  | ip1i.9 |  |-  U e. CPreHilOLD | 
						
							| 6 |  | ip2i.8 |  |-  A e. X | 
						
							| 7 |  | ip2i.9 |  |-  B e. X | 
						
							| 8 | 5 | phnvi |  |-  U e. NrmCVec | 
						
							| 9 | 1 2 | nvgcl |  |-  ( ( U e. NrmCVec /\ A e. X /\ A e. X ) -> ( A G A ) e. X ) | 
						
							| 10 | 8 6 6 9 | mp3an |  |-  ( A G A ) e. X | 
						
							| 11 | 1 4 | dipcl |  |-  ( ( U e. NrmCVec /\ ( A G A ) e. X /\ B e. X ) -> ( ( A G A ) P B ) e. CC ) | 
						
							| 12 | 8 10 7 11 | mp3an |  |-  ( ( A G A ) P B ) e. CC | 
						
							| 13 | 12 | addridi |  |-  ( ( ( A G A ) P B ) + 0 ) = ( ( A G A ) P B ) | 
						
							| 14 |  | eqid |  |-  ( 0vec ` U ) = ( 0vec ` U ) | 
						
							| 15 | 1 2 3 14 | nvrinv |  |-  ( ( U e. NrmCVec /\ A e. X ) -> ( A G ( -u 1 S A ) ) = ( 0vec ` U ) ) | 
						
							| 16 | 8 6 15 | mp2an |  |-  ( A G ( -u 1 S A ) ) = ( 0vec ` U ) | 
						
							| 17 | 16 | oveq1i |  |-  ( ( A G ( -u 1 S A ) ) P B ) = ( ( 0vec ` U ) P B ) | 
						
							| 18 | 1 14 4 | dip0l |  |-  ( ( U e. NrmCVec /\ B e. X ) -> ( ( 0vec ` U ) P B ) = 0 ) | 
						
							| 19 | 8 7 18 | mp2an |  |-  ( ( 0vec ` U ) P B ) = 0 | 
						
							| 20 | 17 19 | eqtri |  |-  ( ( A G ( -u 1 S A ) ) P B ) = 0 | 
						
							| 21 | 20 | oveq2i |  |-  ( ( ( A G A ) P B ) + ( ( A G ( -u 1 S A ) ) P B ) ) = ( ( ( A G A ) P B ) + 0 ) | 
						
							| 22 |  | df-2 |  |-  2 = ( 1 + 1 ) | 
						
							| 23 | 22 | oveq1i |  |-  ( 2 S A ) = ( ( 1 + 1 ) S A ) | 
						
							| 24 |  | ax-1cn |  |-  1 e. CC | 
						
							| 25 | 24 24 6 | 3pm3.2i |  |-  ( 1 e. CC /\ 1 e. CC /\ A e. X ) | 
						
							| 26 | 1 2 3 | nvdir |  |-  ( ( U e. NrmCVec /\ ( 1 e. CC /\ 1 e. CC /\ A e. X ) ) -> ( ( 1 + 1 ) S A ) = ( ( 1 S A ) G ( 1 S A ) ) ) | 
						
							| 27 | 8 25 26 | mp2an |  |-  ( ( 1 + 1 ) S A ) = ( ( 1 S A ) G ( 1 S A ) ) | 
						
							| 28 | 1 3 | nvsid |  |-  ( ( U e. NrmCVec /\ A e. X ) -> ( 1 S A ) = A ) | 
						
							| 29 | 8 6 28 | mp2an |  |-  ( 1 S A ) = A | 
						
							| 30 | 29 29 | oveq12i |  |-  ( ( 1 S A ) G ( 1 S A ) ) = ( A G A ) | 
						
							| 31 | 27 30 | eqtri |  |-  ( ( 1 + 1 ) S A ) = ( A G A ) | 
						
							| 32 | 23 31 | eqtri |  |-  ( 2 S A ) = ( A G A ) | 
						
							| 33 | 32 | oveq1i |  |-  ( ( 2 S A ) P B ) = ( ( A G A ) P B ) | 
						
							| 34 | 13 21 33 | 3eqtr4ri |  |-  ( ( 2 S A ) P B ) = ( ( ( A G A ) P B ) + ( ( A G ( -u 1 S A ) ) P B ) ) | 
						
							| 35 | 1 2 3 4 5 6 6 7 | ip1i |  |-  ( ( ( A G A ) P B ) + ( ( A G ( -u 1 S A ) ) P B ) ) = ( 2 x. ( A P B ) ) | 
						
							| 36 | 34 35 | eqtri |  |-  ( ( 2 S A ) P B ) = ( 2 x. ( A P B ) ) |