Metamath Proof Explorer


Theorem nv0lid

Description: The zero vector is a left identity element. (Contributed by NM, 28-Nov-2007) (Revised by Mario Carneiro, 21-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses nv0id.1
|- X = ( BaseSet ` U )
nv0id.2
|- G = ( +v ` U )
nv0id.6
|- Z = ( 0vec ` U )
Assertion nv0lid
|- ( ( U e. NrmCVec /\ A e. X ) -> ( Z G A ) = A )

Proof

Step Hyp Ref Expression
1 nv0id.1
 |-  X = ( BaseSet ` U )
2 nv0id.2
 |-  G = ( +v ` U )
3 nv0id.6
 |-  Z = ( 0vec ` U )
4 2 3 0vfval
 |-  ( U e. NrmCVec -> Z = ( GId ` G ) )
5 4 oveq1d
 |-  ( U e. NrmCVec -> ( Z G A ) = ( ( GId ` G ) G A ) )
6 5 adantr
 |-  ( ( U e. NrmCVec /\ A e. X ) -> ( Z G A ) = ( ( GId ` G ) G A ) )
7 2 nvgrp
 |-  ( U e. NrmCVec -> G e. GrpOp )
8 1 2 bafval
 |-  X = ran G
9 eqid
 |-  ( GId ` G ) = ( GId ` G )
10 8 9 grpolid
 |-  ( ( G e. GrpOp /\ A e. X ) -> ( ( GId ` G ) G A ) = A )
11 7 10 sylan
 |-  ( ( U e. NrmCVec /\ A e. X ) -> ( ( GId ` G ) G A ) = A )
12 6 11 eqtrd
 |-  ( ( U e. NrmCVec /\ A e. X ) -> ( Z G A ) = A )